A282791 T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than one of its king-move neighbors, with the exception of exactly one element.
0, 0, 0, 1, 0, 1, 2, 8, 8, 2, 5, 16, 73, 16, 5, 12, 72, 318, 318, 72, 12, 26, 240, 1747, 1952, 1747, 240, 26, 56, 736, 8216, 16584, 16584, 8216, 736, 56, 118, 2352, 38027, 119176, 208559, 119176, 38027, 2352, 118, 244, 7128, 173722, 832218, 2207352, 2207352
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..1..0..0. .0..1..0..1. .0..1..0..0. .0..0..1..1. .1..0..1..0 ..1..0..0..1. .0..0..1..0. .1..0..0..1. .0..1..0..0. .0..0..1..0 ..0..1..0..0. .1..0..0..0. .0..0..1..0. .0..0..0..1. .0..0..0..0 ..0..0..0..0. .1..0..1..0. .1..0..0..1. .0..1..0..0. .1..1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..264
Crossrefs
Column 1 is A073778(n-1).
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -3*a(n-4) -2*a(n-5) -a(n-6)
k=2: a(n) = 2*a(n-1) +5*a(n-2) +2*a(n-3) -17*a(n-4) -24*a(n-5) -16*a(n-6)
k=3: [order 12]
k=4: [order 18]
k=5: [order 42]
k=6: [order 60]
Comments