cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282791 T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than one of its king-move neighbors, with the exception of exactly one element.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 2, 8, 8, 2, 5, 16, 73, 16, 5, 12, 72, 318, 318, 72, 12, 26, 240, 1747, 1952, 1747, 240, 26, 56, 736, 8216, 16584, 16584, 8216, 736, 56, 118, 2352, 38027, 119176, 208559, 119176, 38027, 2352, 118, 244, 7128, 173722, 832218, 2207352, 2207352
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2017

Keywords

Comments

Table starts
...0.....0.......1.........2...........5............12..............26
...0.....0.......8........16..........72...........240.............736
...1.....8......73.......318........1747..........8216...........38027
...2....16.....318......1952.......16584........119176..........832218
...5....72....1747.....16584......208559.......2207352........22998587
..12...240....8216....119176.....2207352......34974844.......545174028
..26...736...38027....832218....22998587.....545174028.....12713143876
..56..2352..173722...5780340...236744562....8385651160....292288389872
.118..7128..773529..39020884..2372235577..125782952202...6555156469894
.244.21424.3412416.260919192.23556868268.1869100531456.145619095090322

Examples

			Some solutions for n=4 k=4
..0..1..0..0. .0..1..0..1. .0..1..0..0. .0..0..1..1. .1..0..1..0
..1..0..0..1. .0..0..1..0. .1..0..0..1. .0..1..0..0. .0..0..1..0
..0..1..0..0. .1..0..0..0. .0..0..1..0. .0..0..0..1. .0..0..0..0
..0..0..0..0. .1..0..1..0. .1..0..0..1. .0..1..0..0. .1..1..1..0
		

Crossrefs

Column 1 is A073778(n-1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -3*a(n-4) -2*a(n-5) -a(n-6)
k=2: a(n) = 2*a(n-1) +5*a(n-2) +2*a(n-3) -17*a(n-4) -24*a(n-5) -16*a(n-6)
k=3: [order 12]
k=4: [order 18]
k=5: [order 42]
k=6: [order 60]