cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A282820 Number of inequivalent ways to color the edges of a tetrahedron using at most n colors so that no color appears more than twice.

Original entry on oeis.org

0, 0, 0, 9, 132, 720, 2580, 7245, 17304, 36792, 71640, 130185, 223740, 367224, 579852, 885885, 1315440, 1905360, 2700144, 3752937, 5126580, 6894720, 9142980, 11970189, 15489672, 19830600, 25139400, 31581225, 39341484, 48627432, 59669820, 72724605, 88074720
Offset: 0

Views

Author

David Nacin, Feb 22 2017

Keywords

Examples

			For n = 3 we get a(3) = 9 ways to color the edges of a tetrahedron in three colors so that no color appears more than twice.
		

Crossrefs

Cf. A282817, A282818, A282819, A046023 (tetrahedral edge colorings without restriction).

Programs

  • Mathematica
    Table[(n-2)*n*(n-1)*(n^3+3*n^2-10*n-6)/12, {n, 0, 32}]
  • PARI
    a(n) = (n-2)*n*(n-1)*(n^3+3*n^2-10*n-6)/12 \\ Charles R Greathouse IV, Feb 22 2017
    
  • PARI
    concat(vector(3), Vec(3*x^3*(3 - x)*(1 + 8*x + x^2) / (1 - x)^7 + O(x^40))) \\ Colin Barker, Feb 22 2017

Formula

a(n) = (n-2)*n*(n-1)*(n^3+3*n^2-10*n-6)/12.
From Colin Barker, Feb 22 2017: (Start)
G.f.: 3*x^3*(3 - x)*(1 + 8*x + x^2) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>6. (End)

A282818 Number of inequivalent ways to color the edges of a tetrahedron using at most n colors so that no two adjacent edges have the same color.

Original entry on oeis.org

0, 0, 0, 2, 20, 110, 460, 1540, 4312, 10500, 22920, 45870, 85580, 150722, 252980, 407680, 634480, 958120, 1409232, 2025210, 2851140, 3940790, 5357660, 7176092, 9482440, 12376300, 15971800, 20398950, 25805052, 32356170, 40238660, 49660760, 60854240, 74076112
Offset: 0

Views

Author

David Nacin, Feb 22 2017

Keywords

Examples

			For n = 3 we get a(3) = 2 distinct ways to color the edges of a tetrahedron with three colors so that no two adjacent edges have the same color.
		

Crossrefs

Cf. A282819, A282820, A046023 (tetrahedral edge colorings without restriction).

Programs

  • Mathematica
    Table[n (n - 1) (n - 2) (n^3 - 9 n^2 + 32 n - 38)/12, {n, 0, 34}]
  • PARI
    a(n) = n*(n-1)*(n-2)*(n^3-9*n^2+32*n-38)/12 \\ Charles R Greathouse IV, Feb 22 2017

Formula

a(n) = n*(n-1)*(n-2)*(n^3-9*n^2+32*n-38)/12.
G.f.: -2*x^3*(1+3*x+6*x^2+20*x^3)/(x-1)^7 . - R. J. Mathar, Feb 23 2017
a(n) = 2*A249460(n). - R. J. Mathar, Feb 23 2017
Showing 1-2 of 2 results.