cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282848 a(n) = 2*n + 1 + n mod 4.

Original entry on oeis.org

4, 7, 10, 9, 12, 15, 18, 17, 20, 23, 26, 25, 28, 31, 34, 33, 36, 39, 42, 41, 44, 47, 50, 49, 52, 55, 58, 57, 60, 63, 66, 65, 68, 71, 74, 73, 76, 79, 82, 81, 84, 87, 90, 89, 92, 95, 98, 97, 100, 103, 106, 105, 108, 111, 114, 113, 116, 119, 122, 121, 124, 127
Offset: 1

Views

Author

Zak Seidov, Feb 23 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2*k + 1 + Mod[k, 4], {k, 100}]
    CoefficientList[ Series[(4 + 3 x + 3 x^2 - x^3 - x^4)/((x -1)^2 (1 + x + x^2 + x^3)), {x, 0, 60}], x] (* or *)
    LinearRecurrence[{1, 0, 0, 1, -1}, {4, 7, 10, 9, 12}, 70] (* Robert G. Wilson v, Feb 23 2017 *)
  • PARI
    Vec(x*(4 + 3*x + 3*x^2 - x^3 - x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^100)) \\ Colin Barker, Feb 23 2017

Formula

For n > 4 a(n) = a(n - 4) + 8.
G.f.: x*(4 + 3*x + 3*x^2 - x^3 - x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)). - Colin Barker, Feb 23 2017