A282848 a(n) = 2*n + 1 + n mod 4.
4, 7, 10, 9, 12, 15, 18, 17, 20, 23, 26, 25, 28, 31, 34, 33, 36, 39, 42, 41, 44, 47, 50, 49, 52, 55, 58, 57, 60, 63, 66, 65, 68, 71, 74, 73, 76, 79, 82, 81, 84, 87, 90, 89, 92, 95, 98, 97, 100, 103, 106, 105, 108, 111, 114, 113, 116, 119, 122, 121, 124, 127
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Mathematica
Table[2*k + 1 + Mod[k, 4], {k, 100}] CoefficientList[ Series[(4 + 3 x + 3 x^2 - x^3 - x^4)/((x -1)^2 (1 + x + x^2 + x^3)), {x, 0, 60}], x] (* or *) LinearRecurrence[{1, 0, 0, 1, -1}, {4, 7, 10, 9, 12}, 70] (* Robert G. Wilson v, Feb 23 2017 *)
-
PARI
Vec(x*(4 + 3*x + 3*x^2 - x^3 - x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^100)) \\ Colin Barker, Feb 23 2017
Formula
For n > 4 a(n) = a(n - 4) + 8.
G.f.: x*(4 + 3*x + 3*x^2 - x^3 - x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)). - Colin Barker, Feb 23 2017