A282849 Number of divisors k of n such that (n + k^2)/k is a prime.
1, 2, 0, 2, 0, 4, 0, 0, 0, 4, 0, 4, 0, 0, 0, 2, 0, 4, 0, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0, 8, 0, 0, 0, 2, 0, 4, 0, 0, 0, 4, 0, 8, 0, 0, 0, 2, 0, 2, 0, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0, 8, 0, 0, 0, 0, 0, 4, 0, 0, 0, 8, 0, 4, 0, 0, 0, 2, 0, 8, 0, 0, 0, 4, 0, 4, 0, 0, 0, 4, 0, 6
Offset: 1
Keywords
Examples
a(6) = 4 because (6 + 1^2)/1 = 7 is prime, (6 + 2^2)/2 = 5 is prime, (6 + 3^2)/3 = 5 is prime, (6 + 6^2)/6 = 7 is prime, where 1, 2, 3 and 6 are divisors of 6.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Records and indices of records.
Programs
-
Mathematica
f[n_] := Block[{d = Divisors@ n}, Length@ Select[d, PrimeQ[(n + #^2)/#] &]]; Array[f, 105] (* Robert G. Wilson v, Feb 25 2017 *) Table[DivisorSum[n, 1 &, PrimeQ[(n + #^2)/#] &], {n, 105}] (* Michael De Vlieger, Nov 15 2017 *)
-
PARI
a(n) = sumdiv(n, k, isprime((n+k^2)/k)); \\ Michel Marcus, Feb 26 2017
Formula
a(1) = 1; for n > 0: a(2n) = 2*A088627(n), a(2n + 1) = 0.
Comments