A282853 36-gonal numbers: a(n) = n*(17*n-16).
0, 1, 36, 105, 208, 345, 516, 721, 960, 1233, 1540, 1881, 2256, 2665, 3108, 3585, 4096, 4641, 5220, 5833, 6480, 7161, 7876, 8625, 9408, 10225, 11076, 11961, 12880, 13833, 14820, 15841, 16896, 17985, 19108, 20265, 21456, 22681, 23940, 25233
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Table[n(34n-32)/2, {n,50}] PolygonalNumber[36,Range[0,50]] (* or *) LinearRecurrence[{3,-3,1},{0,1,36},50] (* Harvey P. Dale, Apr 18 2025 *)
-
PARI
for(n=0,100,print1(n*(17*n-16),", ")) \\ Derek Orr, Feb 27 2017
Formula
From Nikolaos Pantelidis, Feb 09 2023 : (Start)
G.f.: x*(1 + 33*x)/(1 - x)^3.
E.g.f.: exp(x)*(x + 17*x^2). (End)