cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282885 T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than one of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element.

Original entry on oeis.org

0, 0, 0, 1, 2, 1, 2, 8, 8, 2, 5, 32, 74, 32, 5, 12, 122, 430, 430, 122, 12, 26, 416, 2426, 3762, 2426, 416, 26, 56, 1414, 13062, 34314, 34314, 13062, 1414, 56, 118, 4626, 67676, 286920, 480995, 286920, 67676, 4626, 118, 244, 14930, 342972, 2342046, 6296324
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2017

Keywords

Comments

Table starts
...0.....0.......1..........2............5.............12...............26
...0.....2.......8.........32..........122............416.............1414
...1.....8......74........430.........2426..........13062............67676
...2....32.....430.......3762........34314.........286920..........2342046
...5...122....2426......34314.......480995........6296324.........80114311
..12...416...13062.....286920......6296324......128768496.......2561487246
..26..1414...67676....2342046.....80114311.....2561487246......79687436788
..56..4626..342972...18668994....995928444....49811090624....2422749969094
.118.14930.1707597..146171090..12166597450...951678283294...72384911847530
.244.47432.8384136.1129426388.146641882796.17942875499666.2134206947210504

Examples

			Some solutions for n=4 k=4
..0..0..1..0. .0..1..0..1. .0..1..1..1. .1..0..1..1. .0..1..0..0
..1..0..1..1. .0..0..0..0. .0..0..0..0. .1..0..0..0. .0..0..0..1
..0..0..0..0. .0..0..1..0. .1..0..0..0. .0..1..1..1. .0..0..1..0
..1..1..0..0. .0..0..1..1. .0..0..0..0. .0..0..0..0. .0..0..1..0
		

Crossrefs

Column 1 is A073778(n-1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -3*a(n-4) -2*a(n-5) -a(n-6)
k=2: [order 10]
k=3: [order 22]
k=4: [order 42]
k=5: [order 86]