A283025 Remainder when sum of first n terms of A005185 is divided by n.
0, 0, 1, 3, 0, 2, 5, 0, 3, 6, 9, 2, 6, 10, 1, 5, 10, 16, 3, 9, 15, 21, 4, 13, 20, 1, 9, 17, 25, 3, 14, 22, 30, 7, 18, 27, 0, 11, 21, 32, 3, 14, 26, 38, 5, 16, 27, 46, 8, 19, 35, 49, 8, 23, 38, 51, 11, 25, 41, 57, 12, 27, 50, 2, 15, 35, 52, 67, 19, 40, 58, 5, 25, 44, 64, 7, 28, 47, 67, 9, 31, 52, 73, 13, 34, 56, 80, 16, 38, 62, 86, 18
Offset: 1
Examples
a(4) = 3 since Sum_{k=1..4} A005185(k) = 1 + 1 + 2 + 3 = 7 and remainder when 7 is divided by 4 is 3.
Links
- Altug Alkan, Table of n, a(n) for n = 1..10000
- Altug Alkan, Alternative Graph of A283025
- Altug Alkan, Illustration Of Residue Classes Modulo 4
Programs
-
Maple
A005185:= proc(n) option remember; procname(n-procname(n-1)) +procname(n-procname(n-2)) end proc: A005185(1):= 1: A005185(2):= 1: L:= ListTools[PartialSums](map(A005185, [$1..1000])): seq(L[i] mod i, i=1..1000); # Robert Israel, Feb 28 2017
-
Mathematica
h[1]=h[2]=1; h[n_]:=h[n]= h[n-h[n-1]] + h[n-h[n-2]]; Mod[ Accumulate[h /@ Range[100]], Range[100]] (* Giovanni Resta, Feb 27 2017 *)
-
PARI
a=vector(1000); a[1]=a[2]=1; for(n=3, #a, a[n]=a[n-a[n-1]]+a[n-a[n-2]]); vector(#a, n, sum(k=1, n, a[k]) % n)
-
PARI
first(n)=my(v=vector(n), s); v[1]=v[2]=1; for(k=3, n, v[k]=v[k-v[k-1]]+v[k-v[k-2]]); for(k=1, n, s+=v[k]; v[k]=s%k); v \\ after Charles R Greathouse IV at A282891
Comments