cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282892 The difference between the number of partitions of n into odd parts (A000009) and the number of partitions of n into even parts (A035363).

Original entry on oeis.org

0, 1, 0, 2, 0, 3, 1, 5, 1, 8, 3, 12, 4, 18, 7, 27, 10, 38, 16, 54, 22, 76, 33, 104, 45, 142, 64, 192, 87, 256, 120, 340, 159, 448, 215, 585, 283, 760, 374, 982, 486, 1260, 634, 1610, 814, 2048, 1049, 2590, 1335, 3264, 1700, 4097, 2146, 5120, 2708, 6378, 3390, 7917, 4243, 9792, 5276
Offset: 0

Views

Author

Robert G. Wilson v, Feb 24 2017

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, t) option remember; `if`(n=0, 1, add(add(`if`(
          (d+t)::odd, d, 0), d=divisors(j))*b(n-j, t), j=1..n)/n)
        end:
    a:= n-> b(n, 0) -b(n, 1):
    seq(a(n), n=0..80);  # Alois P. Heinz, Feb 24 2017
  • Mathematica
    f[n_] := Length[ IntegerPartitions[n, All, 2Range[n] -1]] - Length[ IntegerPartitions[n, All, 2 Range[n]]]; Array[f, 60]
    (* Second program: *)
    b[n_, t_] := b[n, t] = If[n == 0, 1, Sum[Sum[If[
         OddQ[d+t], d, 0], {d, Divisors[j]}]*b[n-j, t], {j, 1, n}]/n];
    a[n_] := b[n, 0] - b[n, 1];
    a /@ Range[0, 80] (* Jean-François Alcover, Jun 06 2021, after Alois P. Heinz *)

Formula

a(2n-1) = A000009(2n-1) = A078408(n).
a(2n) = A282893(n).