A282892 The difference between the number of partitions of n into odd parts (A000009) and the number of partitions of n into even parts (A035363).
0, 1, 0, 2, 0, 3, 1, 5, 1, 8, 3, 12, 4, 18, 7, 27, 10, 38, 16, 54, 22, 76, 33, 104, 45, 142, 64, 192, 87, 256, 120, 340, 159, 448, 215, 585, 283, 760, 374, 982, 486, 1260, 634, 1610, 814, 2048, 1049, 2590, 1335, 3264, 1700, 4097, 2146, 5120, 2708, 6378, 3390, 7917, 4243, 9792, 5276
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (terms n=1..165 from Robert G. Wilson v)
Programs
-
Maple
with(numtheory): b:= proc(n, t) option remember; `if`(n=0, 1, add(add(`if`( (d+t)::odd, d, 0), d=divisors(j))*b(n-j, t), j=1..n)/n) end: a:= n-> b(n, 0) -b(n, 1): seq(a(n), n=0..80); # Alois P. Heinz, Feb 24 2017
-
Mathematica
f[n_] := Length[ IntegerPartitions[n, All, 2Range[n] -1]] - Length[ IntegerPartitions[n, All, 2 Range[n]]]; Array[f, 60] (* Second program: *) b[n_, t_] := b[n, t] = If[n == 0, 1, Sum[Sum[If[ OddQ[d+t], d, 0], {d, Divisors[j]}]*b[n-j, t], {j, 1, n}]/n]; a[n_] := b[n, 0] - b[n, 1]; a /@ Range[0, 80] (* Jean-François Alcover, Jun 06 2021, after Alois P. Heinz *)