cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282900 Least non-infinitary divisor of A162643(n).

Original entry on oeis.org

2, 3, 2, 2, 3, 2, 5, 2, 4, 2, 2, 3, 2, 7, 5, 2, 2, 3, 2, 2, 3, 5, 2, 2, 3, 2, 3, 2, 4, 7, 3, 2, 2, 2, 2, 3, 11, 2, 3, 2, 2, 2, 7, 2, 5, 3, 2, 4, 3, 2, 13, 3, 2, 5, 2, 2, 2, 2, 2, 3
Offset: 1

Views

Author

Vladimir Shevelev, Feb 24 2017

Keywords

Comments

Let n=q_1*...*q_t, where q_i are distinct increasing terms of A050376. This representation is unique (for n=1 the product is empty). Every subproduct is an infinitary divisor of n. All numbers having at least one non-infinitary divisor form A162643.

Examples

			For n=60=3*4*5, no subproduct is 2,6,10,30. They are all non-infinitary divisors of 60. Since 60=A162643(17) then a(17) = 2.
		

Crossrefs

Programs

  • Mathematica
    Map[First@ Complement[Divisors@ #, If[# == 1, {1}, Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[#] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]]] &, Select[Range@ 198, ! IntegerQ@ Log2@ DivisorSigma[0, #] &]] (* Michael De Vlieger, Feb 24 2017, after Paul Abbott at A077609 *)