A282902 Square array A(n, k) read by antidiagonals downwards: multiplicative order of 2 modulo prime(n)^k, where k runs over the positive integers.
2, 6, 4, 18, 20, 3, 54, 100, 21, 10, 162, 500, 147, 110, 12, 486, 2500, 1029, 1210, 156, 8, 1458, 12500, 7203, 13310, 2028, 136, 18, 4374, 62500, 50421, 146410, 26364, 2312, 342, 11, 13122, 312500, 352947, 1610510, 342732, 39304, 6498, 253, 28, 39366, 1562500, 2470629, 17715610, 4455516, 668168, 123462, 5819, 812, 5
Offset: 2
Examples
Array A(n, k) starts 2, 6, 18, 54, 162, 486, 1458 4, 20, 100, 500, 2500, 12500, 62500 3, 21, 147, 1029, 7203, 50421, 352947 10, 110, 1210, 13310, 146410, 1610510, 17715610 12, 156, 2028, 26364, 342732, 4455516, 57921708 8, 136, 2312, 39304, 668168, 11358856, 193100552 18, 342, 6498, 123462, 2345778, 44569782, 846825858
Links
- Robert Israel, Table of n, a(n) for n = 2..10012 (first 142 antidiagonals, flattened)
Programs
-
Maple
seq(seq(numtheory:-order(2,ithprime(i)^(m-i)),i=2..m-1),m=2..10); # Robert Israel, Feb 24 2017
-
Mathematica
A[n_, k_] := MultiplicativeOrder[2, Prime[n]^k]; Table[A[n-k+1, k], {n, 2, 11}, {k, n-1, 1, -1}] // Flatten (* Jean-François Alcover, Mar 02 2020 *)
-
PARI
a(n, k) = znorder(Mod(2, prime(n)^k)) array(rows, cols) = for(n=2, rows+1, for(k=1, cols, print1(a(n, k), ", ")); print("")) array(7, 8) \\ print 7 X 8 array
Comments