cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282902 Square array A(n, k) read by antidiagonals downwards: multiplicative order of 2 modulo prime(n)^k, where k runs over the positive integers.

Original entry on oeis.org

2, 6, 4, 18, 20, 3, 54, 100, 21, 10, 162, 500, 147, 110, 12, 486, 2500, 1029, 1210, 156, 8, 1458, 12500, 7203, 13310, 2028, 136, 18, 4374, 62500, 50421, 146410, 26364, 2312, 342, 11, 13122, 312500, 352947, 1610510, 342732, 39304, 6498, 253, 28, 39366, 1562500, 2470629, 17715610, 4455516, 668168, 123462, 5819, 812, 5
Offset: 2

Views

Author

Felix Fröhlich, Feb 24 2017

Keywords

Comments

The number of initial terms in row n with constant values is equal to the highest value of x such that p = prime(n) satisfies 2^(p-1) == 1 (mod p^x).
From Robert Israel, Feb 24 2017: (Start)
a(n,k+1) is either a(n,k) or a(n,k)*prime(n). If it is a(n,k)*prime(n), then a(n,k+j) = a(n,k)*prime(n)^j for all j>=1.
a(n,2) = a(n,1) if and only if prime(n) is a Wieferich prime (A001220).
(End)

Examples

			Array A(n, k) starts
   2,   6,   18,     54,     162,      486,      1458
   4,  20,  100,    500,    2500,    12500,     62500
   3,  21,  147,   1029,    7203,    50421,    352947
  10, 110, 1210,  13310,  146410,  1610510,  17715610
  12, 156, 2028,  26364,  342732,  4455516,  57921708
   8, 136, 2312,  39304,  668168, 11358856, 193100552
  18, 342, 6498, 123462, 2345778, 44569782, 846825858
		

Crossrefs

Cf. A014664 (column 1), A243905 (column 2).
Cf. A001220.

Programs

  • Maple
    seq(seq(numtheory:-order(2,ithprime(i)^(m-i)),i=2..m-1),m=2..10); # Robert Israel, Feb 24 2017
  • Mathematica
    A[n_, k_] := MultiplicativeOrder[2, Prime[n]^k];
    Table[A[n-k+1, k], {n, 2, 11}, {k, n-1, 1, -1}] // Flatten (* Jean-François Alcover, Mar 02 2020 *)
  • PARI
    a(n, k) = znorder(Mod(2, prime(n)^k))
    array(rows, cols) = for(n=2, rows+1, for(k=1, cols, print1(a(n, k), ", ")); print(""))
    array(7, 8) \\ print 7 X 8 array