cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282933 Number of ways to write n as x^4 + y^2 + z^2 + w^2 with x,y,z nonnegative integers and w a positive integer such that 8*y^2 - 8*y*z + 9*z^2 is a square.

Original entry on oeis.org

1, 2, 2, 2, 3, 4, 2, 1, 4, 5, 3, 2, 3, 3, 1, 1, 5, 6, 4, 4, 6, 5, 1, 3, 8, 7, 6, 4, 5, 6, 2, 2, 6, 7, 5, 6, 7, 4, 1, 4, 9, 7, 5, 2, 7, 6, 1, 2, 5, 8, 7, 8, 6, 8, 5, 3, 8, 6, 4, 2, 6, 6, 2, 2, 7, 9, 6, 6, 8, 9, 1, 3, 8, 7, 6, 4, 4, 4, 2, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 25 2017

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 16^k*m (k = 0,1,2,... and m = 1, 8, 15, 23, 39, 47, 71, 93, 239, 287, 311, 319, 383, 391, 591, 632, 1663, 2639, 5591, 6236).
(ii) Each n = 0,1,2,... can be written as x^4 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that a*y^2 - b*y*z + c*z^2 is a square, whenever (a,b,c) is among the ordered triples (6,21,19), (15,33,22), (16,54,39),(18,51,34), (19,53,34), (21,42,22), (22,69,51).
By the linked JNT paper, each n = 0,1,2,... is the sum of a fourth power and three squares, and we can also write n as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and y*(y-z) = 0. Whether y = 0 or y = z, the number 8*y^2 - 8*y*z + 9*z^2 is definitely a square.
First occurrence of k: 1, 2, 5, 6, 10, 18, 26, 25, 41, 85, 81, 101, 105, 90, 201, 146, 321, 341, 261, 325, 297, 370, 585, 306, 906, ..., . Robert G. Wilson v, Feb 25 2017

Examples

			a(8) = 1 since 8 = 0^4 + 0^2 + 2^2 + 2^2 with 8*0^2 - 8*0*2 + 9*2^2 = 6^2.
a(15) = 1 since 15 = 1^4 + 2^2 + 1^2 + 3^2 with 8*2^2 - 8*2*1 + 9*1^2 = 5^2.
a(23) = 1 since 23 = 1^4 + 3^2 + 3^2 + 2^2 with 8*3^2 - 8*3*3 + 9*3^2 = 9^2.
a(591) = 1 since 591 = 3^4 + 5^2 + 1^2 + 22^2 with 8*5^2 - 8*5*1 + 9*1^2 = 13^2.
a(632) = 1 since 632 = 4^4 + 12^2 + 6^2 + 14^2 with 8*12^2 - 8*12*6 + 9*6^2 = 30^2.
a(1663) = 1 since 1663 = 3^4 + 27^2 + 23^2 + 18^2 with 8*27^2 - 8*27*23 + 9*23^2 = 75^2.
a(2639) = 1 since 2639 = 7^4 + 15^2 + 3^2 + 2^2 with 8*15^2 - 8*15*3 + 9*3^2 = 39^2.
a(5591) = 1 since 5591 = 5^4 + 6^2 + 21^2 + 67^2 with 8*6^2 - 8*6*21 + 9*21^2 = 57^2.
a(6236) = 1 since 6236 = 1^4 + 45^2 + 31^2 + 57^2 with 8*45^2 - 8*45*31 + 9*31^2 = 117^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    Do[r=0;Do[If[SQ[n-x^4-y^2-z^2]&&SQ[8y^2-8*y*z+9z^2],r=r+1],{x,0,(n-1)^(1/4)},{y,0,Sqrt[n-1-x^4]},{z,0,Sqrt[n-1-x^4-y^2]}];Print[n," ",r];Continue,{n,1,80}]