cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283029 Number of inequivalent 5 X 5 matrices with entries in {1,2,3,..,n} when a matrix and its transpose are considered equivalent.

Original entry on oeis.org

0, 1, 16793600, 423651479175, 562950490292224, 149011627197265625, 14215144250057342976, 670534312205763205375, 18889465949070766899200, 358948993948871860432449, 5000000000500000000000000, 54173529719030485105622951, 476981083228048575587942400
Offset: 0

Views

Author

David Nacin, Feb 27 2017

Keywords

Comments

Cycle index of symmetric group S2 acting on the set of 25 entries is (s(2)^10*s(1)^5 + s(1)^25)/2.

Examples

			For n=2 we get a(2)=16793600 inequivalent 5x5 binary matrices up to the action of transposition.
		

Crossrefs

Cf. A282612,A282613,A282614. A283026, A283027, A283028, A283030, A283031, A283032, A283033. A170798 (4x4 version). A168555 (3x3 version). A019582 (2x2 version)

Programs

  • Mathematica
    Table[n^15 (n^2 + 1) (n^8 - n^6 + n^4 - n^2 + 1)/2, {n, 0, 12}]
  • PARI
    a(n) = n^15*(n^2+1)*(n^8-n^6+n^4-n^2+1)/2; \\ Indranil Ghosh, Feb 27 2017
    
  • Python
    def A283029(n): return n**15*(n**2+1)*(n**8-n**6+n**4-n**2+1)/2 # Indranil Ghosh, Feb 27 2017

Formula

a(n) = n^15*(n^2+1)*(n^8-n^6+n^4-n^2+1)/2.
From Chai Wah Wu, Dec 07 2018: (Start)
a(n) = 26*a(n-1) - 325*a(n-2) + 2600*a(n-3) - 14950*a(n-4) + 65780*a(n-5) - 230230*a(n-6) + 657800*a(n-7) - 1562275*a(n-8) + 3124550*a(n-9) - 5311735*a(n-10) + 7726160*a(n-11) - 9657700*a(n-12) + 10400600*a(n-13) - 9657700*a(n-14) + 7726160*a(n-15) - 5311735*a(n-16) + 3124550*a(n-17) - 1562275*a(n-18) + 657800*a(n-19) - 230230*a(n-20) + 65780*a(n-21) - 14950*a(n-22) + 2600*a(n-23) - 325*a(n-24) + 26*a(n-25) - a(n-26) for n > 25.
G.f.: x*(x^24 + 16793574*x^23 + 423214845900*x^22 + 551941009751074*x^21 + 134512557517054626*x^20 + 10522699609491808746*x^19 + 347912001753554722204*x^18 + 5696453728178627889150*x^17 + 50977946159336791604079*x^16 + 265857130683340877431996*x^15 + 842694350441988138095256*x^14 + 1667306282568523129263444*x^13 + 2089823554970188253479900*x^12 + 1667306282568523129263444*x^11 + 842694350441988138095256*x^10 + 265857130683340877431996*x^9 + 50977946159336791604079*x^8 + 5696453728178627889150*x^7 + 347912001753554722204*x^6 + 10522699609491808746*x^5 + 134512557517054626*x^4 + 551941009751074*x^3 + 423214845900*x^2 + 16793574*x + 1)/(x - 1)^26. (End)