cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A283027 Number of inequivalent 4 X 4 matrices with entries in {1,2,3,...,n} up to rotations.

Original entry on oeis.org

0, 1, 16456, 10763361, 1073758336, 38147070625, 705277897416, 8308234084801, 70368748374016, 463255057977921, 2500000025005000, 11487432519490081, 46221064831264896, 166354152499741921, 544488334821309256, 1642102089568970625, 4611686019501162496
Offset: 0

Views

Author

David Nacin, Feb 27 2017

Keywords

Comments

Cycle index of cyclic group C4 acting on the 16 entries is (2s(4)^4 + s(2)^8 + s(1)^16)/24.

Examples

			For n=2 we get a(2)=16456 inequivalent 4 X 4 binary matrices up to rotations.
		

Crossrefs

Row n=4 of A343095.
Cf. A283031 (5 X 5 version), A282613 (3 X 3 version), A006528 (2 X 2 version).

Programs

  • GAP
    List([0..20], n -> n^4*(n^4+1)*(n^8-n^4+2)/4); # G. C. Greubel, Dec 07 2018
  • Magma
    [n^4*(n^4+1)*(n^8-n^4+2)/4: n in [0..20]]; // G. C. Greubel, Dec 07 2018
    
  • Maple
    [n^4*(n^4+1)*(n^8-n^4+2)/4$n=0..18]; # Muniru A Asiru, Dec 07 2018
  • Mathematica
    Table[n^4*(n^4 + 1)*(n^8 - n^4 + 2)/4,{n,0,30}]
  • PARI
    a(n) = n^4*(n^4 + 1)*(n^8 - n^4 + 2)/4; \\ Indranil Ghosh, Feb 27 2017
    
  • Python
    def A283027(n) : return n**4*(n**4 + 1)*(n**8 - n**4 + 2)/4 # Indranil Ghosh, Feb 27 2017
    
  • Python
    def A283027(n): return n**4*(n**4*(n**8+1)+2)>>2 # Chai Wah Wu, Jan 24 2023
    
  • Sage
    [n^4*(n^4+1)*(n^8-n^4+2)/4 for n in range(20)] # G. C. Greubel, Dec 07 2018
    

Formula

a(n) = n^4*(n^4 + 1)*(n^8 - n^4 + 2)/4.
From Chai Wah Wu, Dec 07 2018: (Start)
a(n) = 17*a(n-1) - 136*a(n-2) + 680*a(n-3) - 2380*a(n-4) + 6188*a(n-5) - 12376*a(n-6) + 19448*a(n-7) - 24310*a(n-8) + 24310*a(n-9) - 19448*a(n-10) + 12376*a(n-11) - 6188*a(n-12) + 2380*a(n-13) - 680*a(n-14) + 136*a(n-15) - 17*a(n-16) + a(n-17) for n > 16.
G.f.: -x*(x + 1)*(x^14 + 16438*x^13 + 10467307*x^12 + 882551228*x^11 + 20463257081*x^10 + 175065647018*x^9 + 626805100059*x^8 + 968894657736*x^7 + 626805100059*x^6 + 175065647018*x^5 + 20463257081*x^4 + 882551228*x^3 + 10467307*x^2 + 16438*x + 1)/(x - 1)^17. (End)
E.g.f.: (1/4)*x*(x^15 + 120*x^14 + 6020*x^13 + 165620*x^12 + 2757118*x^11 + 28936908*x^10 + 193754990*x^9 + 820784250*x^8 + 2141764054*x^7 + 3281882632*x^6 + 2734926824*x^5 + 1096191600*x^4 + 171800604*x^3 + 7142664*x^2 + 32908*x + 4)*exp(x). - Stefano Spezia, Dec 07 2018
a(n) = n^4*(n^12 + n^4 + 2)/4. - Chai Wah Wu, Jan 24 2023

A283031 Number of inequivalent 5 X 5 matrices with entries in {1,2,3,...,n} up to rotations.

Original entry on oeis.org

0, 1, 8390720, 211822552035, 281474993496064, 74505806274453125, 7107572010747738816, 335267154940213889575, 9444732965876730429440, 179474496923598616041129, 2500000000002500005000000, 27086764858479561198237131, 238490541610199280719585280
Offset: 0

Views

Author

David Nacin, Feb 27 2017

Keywords

Comments

Cycle index of cyclic group C4 acting on the set of 25 entries is (2*s(4)^6*s(1) + s(2)^12*s(1) + s(1)^25).

Examples

			For n=2 we get a(2)=8390720 inequivalent 5 X 5 binary matrices up to rotations.
		

Crossrefs

Row n=5 of A343095.
Cf. A283027 (4 X 4 version), A282613 (3 X 3 version), A006528 (2 X 2 version).

Programs

  • GAP
    List([0..30], n -> n^7*(n^2+1)*(n^4-n^2+1)*(n^12-n^6+2)/4); # G. C. Greubel, Dec 07 2018
  • Magma
    [n^7*(n^2+1)*(n^4-n^2+1)*(n^12-n^6+2)/4: n in [0..20]]; // G. C. Greubel, Dec 07 2018
    
  • Maple
    [n^7*(n^2+1)*(n^4-n^2+1)*(n^12-n^6+2)/4$n=0..16]; # Muniru A Asiru, Dec 07 2018
  • Mathematica
    Table[n^7(n^2 + 1)(n^4 - n^2 + 1)(n^12 - n^6 + 2)/4, {n, 0, 16}]
  • PARI
    a(n) = n^7*(n^2 + 1)*(n^4 - n^2 + 1)*(n^12 - n^6 + 2)/4; \\ Indranil Ghosh, Feb 27 2017
    
  • Python
    def A283031(n): return n**7*(n**2 + 1)*(n**4 - n**2 + 1)*(n**12 - n**6 + 2)/4 # Indranil Ghosh, Feb 27 2017
    
  • Python
    def A283031(n): return n**7*(n**6*(n**12+1)+2)>>2 # Chai Wah Wu, Jan 24 2023
    
  • Sage
    [n^7*(n^2+1)*(n^4-n^2+1)*(n^12-n^6+2)/4 for n in range(20)] # G. C. Greubel, Dec 07 2018
    

Formula

a(n) = n^7*(n^2 + 1)*(n^4 - n^2 + 1)*(n^12 - n^6 + 2)/4.
From Chai Wah Wu, Dec 07 2018: (Start)
a(n) = 26*a(n-1) - 325*a(n-2) + 2600*a(n-3) - 14950*a(n-4) + 65780*a(n-5) - 230230*a(n-6) + 657800*a(n-7) - 1562275*a(n-8) + 3124550*a(n-9) - 5311735*a(n-10) + 7726160*a(n-11) - 9657700*a(n-12) + 10400600*a(n-13) - 9657700*a(n-14) + 7726160*a(n-15) - 5311735*a(n-16) + 3124550*a(n-17) - 1562275*a(n-18) + 657800*a(n-19) - 230230*a(n-20) + 65780*a(n-21) - 14950*a(n-22) + 2600*a(n-23) - 325*a(n-24) + 26*a(n-25) - a(n-26) for n > 25.
G.f.: x*(x^24 + 8390694*x^23 + 211604393640*x^22 + 275970334124554*x^21 + 67256276957109786*x^20 + 5261349807304085586*x^19 + 173956000912091771464*x^18 + 2848226864007694392990*x^17 + 25488973079546662159119*x^16 + 132928565342248912495516*x^15 + 421347175220529448574736*x^14 + 833653141283634765151044*x^13 + 1044911777486454930701740*x^12 + 833653141283634765151044*x^11 + 421347175220529448574736*x^10 + 132928565342248912495516*x^9 + 25488973079546662159119*x^8 + 2848226864007694392990*x^7 + 173956000912091771464*x^6 + 5261349807304085586*x^5 + 67256276957109786*x^4 + 275970334124554*x^3 + 211604393640*x^2 + 8390694*x + 1)/(x - 1)^26. (End)
a(n) = n^7*(n^18 + n^6 + 2)/4. - Chai Wah Wu, Jan 24 2023

A283033 Number of inequivalent 5 X 5 matrices with entries in {1,2,3,...,n} up to rotations and reflections.

Original entry on oeis.org

0, 1, 4211744, 105918450471, 140738033618944, 37252918396015625, 3553786240466361696, 167633579843887699759, 4722366500530551259136, 89737248564744874067889, 1250000000501250002500000, 13543382431328404683826391, 119245270812803151147085824
Offset: 0

Views

Author

David Nacin, Feb 27 2017

Keywords

Comments

Cycle index of dihedral group D4 acting on the 25 entries is (2*s(4)^6*s(1) + s(2)^{12}*s(1) + 4*s(2)^10*s(1)^5 + s(1)^25)/8.

Examples

			For n=2 we get a(2)=4211744 inequivalent 5 X 5 binary matrices up to rotations and reflections.
		

Crossrefs

Row n=5 of A343097.
Cf. A217338 (4 X 4 version), A217331 (3 X 3 version), A002817 (2 X 2 version).

Programs

  • GAP
    List([0..20], n -> n^7*(n^18+4*n^8+n^6+2)/8); # G. C. Greubel, Dec 07 2018
  • Magma
    [n^7*(n^18+4*n^8+n^6+2)/8: n in [0..20]]; // G. C. Greubel, Dec 07 2018
    
  • Maple
    [n^7*(n^18+4*n^8+n^6+2)/8$n=0..16]; # Muniru A Asiru, Dec 07 2018
  • Mathematica
    Table[n^7 (n^18 + 4 n^8 + n^6 + 2)/8, {n, 0, 16}]
  • PARI
    a(n) = n^7*(n^18 + 4*n^8 + n^6 + 2)/8; \\ Indranil Ghosh, Feb 27 2017
    
  • Python
    def A283033(n): return n**7*(n**18 + 4*n**8 + n**6 + 2)/8 # Indranil Ghosh, Feb 27 2017
    
  • Sage
    [n^7*(n^18+4*n^8+n^6+2)/8 for n in range(20)] # G. C. Greubel, Dec 07 2018
    

Formula

a(n) = n^7*(n^18 + 4*n^8 + n^6 + 2)/8.
From Chai Wah Wu, Dec 07 2018: (Start)
a(n) = 26*a(n-1) - 325*a(n-2) + 2600*a(n-3) - 14950*a(n-4) + 65780*a(n-5) - 230230*a(n-6) + 657800*a(n-7) - 1562275*a(n-8) + 3124550*a(n-9) - 5311735*a(n-10) + 7726160*a(n-11) - 9657700*a(n-12) + 10400600*a(n-13) - 9657700*a(n-14) + 7726160*a(n-15) - 5311735*a(n-16) + 3124550*a(n-17) - 1562275*a(n-18) + 657800*a(n-19) - 230230*a(n-20) + 65780*a(n-21) - 14950*a(n-22) + 2600*a(n-23) - 325*a(n-24) + 26*a(n-25) - a(n-26) for n > 25.
G.f.: x*(x^24 + 4211718*x^23 + 105808945452*x^22 + 137985522720898*x^21 + 33628142067806706*x^20 + 2630674898090394666*x^19 + 86978000386844370748*x^18 + 1424113432167998385342*x^17 + 12744486540004851097263*x^16 + 66464282669989885009756*x^15 + 210673587611186802329496*x^14 + 416826570643036689533748*x^13 + 522455888740564118388412*x^12 + 416826570643036689533748*x^11 + 210673587611186802329496*x^10 + 66464282669989885009756*x^9 + 12744486540004851097263*x^8 + 1424113432167998385342*x^7 + 86978000386844370748*x^6 + 2630674898090394666*x^5 + 33628142067806706*x^4 + 137985522720898*x^3 + 105808945452*x^2 + 4211718*x + 1)/(x - 1)^26. (End)

A283028 Number of inequivalent 4 X 4 matrices with entries in {1,2,3,...,n} up to vertical and horizontal reflections.

Original entry on oeis.org

0, 1, 16576, 10766601, 1073790976, 38147265625, 705278736576, 8308236966001, 70368756760576, 463255079498001, 2500000075000000, 11487432626662201, 46221065046245376, 166354152907593001, 544488335559184576, 1642102090850390625, 4611686021648613376
Offset: 0

Views

Author

David Nacin, Feb 27 2017

Keywords

Comments

Cycle index of dihedral group D2 acting on the 16 entries is (3s(2)^8 + s(1)^16)/4.

Examples

			For n=2 we get a(2)=16576 inequivalent 4 X 4 binary matrices up to vertical and horizontal reflections.
		

Crossrefs

Cf. A283032 (5 X 5 version), A282614 (3 X 3 version), A039623 (2 X 2 version).

Programs

  • GAP
    List([0..20], n -> n^8*(n^8+3)/4); # G. C. Greubel, Dec 07 2018
  • Magma
    [n^8*(n^8+3)/4: n in [0..20]]; // G. C. Greubel, Dec 07 2018
    
  • Maple
    [n^8*(n^8+3)/4$n=0..18]; # Muniru A Asiru, Dec 07 2018
  • Mathematica
    Table[n^8(n^8 + 3)/4,{n,0,30}]
  • PARI
    a(n) = n^8 * (n^8 + 3)/4; \\ Altug Alkan, Feb 27 2017
    
  • Python
    def A283028(n): return n**8*(n**8 + 3)/4 # Indranil Ghosh, Feb 27 2017
    
  • Sage
    [n^8*(n^8+3)/4 for n in range(20)] # G. C. Greubel, Dec 07 2018
    

Formula

a(n) = n^8 * (n^8 + 3)/4.
From Chai Wah Wu, Dec 07 2018: (Start)
a(n) = 17*a(n-1) - 136*a(n-2) + 680*a(n-3) - 2380*a(n-4) + 6188*a(n-5) - 12376*a(n-6) + 19448*a(n-7) - 24310*a(n-8) + 24310*a(n-9) - 19448*a(n-10) + 12376*a(n-11) - 6188*a(n-12) + 2380*a(n-13) - 680*a(n-14) + 136*a(n-15) - 17*a(n-16) + a(n-17) for n > 16.
G.f.: -x*(x + 1)*(x^14 + 16558*x^13 + 10468387*x^12 + 882544028*x^11 + 20463263441*x^10 + 175065686258*x^9 + 626804969739*x^8 + 968894839176*x^7 + 626804969739*x^6 + 175065686258*x^5 + 20463263441*x^4 + 882544028*x^3 + 10468387*x^2 + 16558*x + 1)/(x - 1)^17. (End)
E.g.f.: (1/4)*x*exp(x)*(x^15 + 120*x^14 + 6020*x^13 + 165620*x^12 + 2757118*x^11 + 28936908*x^10 + 193754990*x^9 + 820784250*x^8 + 2141764056*x^7 + 3281882688*x^6 + 2734927356*x^5 + 1096193700*x^4 + 171804004*x^3 + 7144584*x^2 + 33148*x + 4). - Stefano Spezia, Dec 07 2018

A283030 Number of inequivalent 5 X 5 matrices with entries in {1,2,3,...,n} up to row permutations.

Original entry on oeis.org

0, 1, 376992, 7355513529, 9474438804480, 2491483056641250, 237223883948569056, 11182222570880983622, 314920519245916176384, 5983496429606726016735, 83341666958337500020000, 902948225666983587054711, 7950004204832195461143552, 58805000552467321853765064
Offset: 0

Views

Author

David Nacin, Feb 27 2017

Keywords

Comments

Cycle index of symmetric group S4 on the set of 25 entries is (10*s(2)^5*s(1)^15 + 20*s(3)^5*s(1)^10 + 15*s(2)^10*s(1)^5 + 30*s(4)^5*s(1)^5 + 20*s(2)^5*s(3)^5 + 24*s(5)^5+s(1)^25)/120.

Examples

			For n=2 we get a(2)=376992 inequivalent 5 X 5 binary matrices up to row permutations.
		

Crossrefs

Cf. A283026 (4 X 4 version), A282612 (3 X 3 version), A037270 (2 X 2 version).

Programs

  • GAP
    List([0..20], n -> n^5*(n^20 +10*n^15 +35*n^10 +50*n^5 +24)/120); # G. C. Greubel, Dec 07 2018
  • Magma
    [n^5*(n^20 +10*n^15 +35*n^10 +50*n^5 +24)/120: n in [0..20]]; // G. C. Greubel, Dec 07 2018
    
  • Maple
    [(10*n^20+35*n^15+50*n^10+24*n^5+n^25)/120$n=0..16]; # Muniru A Asiru, Dec 07 2018
  • Mathematica
    Table[(10n^20+ 35n^15 + 50n^10 + 24n^5 + n^25)/120, {n, 0, 16}]
  • PARI
    a(n) = (10*n^20 + 35*n^15 + 50*n^10 + 24*n^5 + n^25)/120; \\ Indranil Ghosh, Feb 27 2017
    
  • Python
    def A283030(n): return (10*n**20 + 35*n**15 + 50*n**10 + 24*n**5 + n**25)/120 # Indranil Ghosh, Feb 27 2017
    
  • Sage
    [n^5*(n^20 +10*n^15 +35*n^10 +50*n^5 +24)/120 for n in range(20)] # G. C. Greubel, Dec 07 2018
    

Formula

a(n) = (n^25 + 10*n^20 + 35*n^15 + 50*n^10 + 24*n^5)/120.
From Chai Wah Wu, Dec 07 2018: (Start)
a(n) = 26*a(n-1) - 325*a(n-2) + 2600*a(n-3) - 14950*a(n-4) + 65780*a(n-5) - 230230*a(n-6) + 657800*a(n-7) - 1562275*a(n-8) + 3124550*a(n-9) - 5311735*a(n-10) + 7726160*a(n-11) - 9657700*a(n-12) + 10400600*a(n-13) - 9657700*a(n-14) + 7726160*a(n-15) - 5311735*a(n-16) + 3124550*a(n-17) - 1562275*a(n-18) + 657800*a(n-19) - 230230*a(n-20) + 65780*a(n-21) - 14950*a(n-22) + 2600*a(n-23) - 325*a(n-24) + 26*a(n-25) - a(n-26) for n > 25.
G.f.: x*(201376*x^23 + 6769097812*x^22 + 9115118766616*x^21 + 2236218775591321*x^20 + 175251248958400030*x^19 + 5797456665826176046*x^18 + 94937993285056078902*x^17 + 849635569433212953261*x^16 + 4430970723887327210136*x^15 + 14044903652456409705760*x^14 + 27788396155245137222056*x^13 + 34830392581327241688322*x^12 + 27788479931754180338596*x^11 + 14044908029988217540516*x^10 + 4430933630938187561140*x^9 + 849629302807069561746*x^8 + 94943797840269544152*x^7 + 5799609980863901436*x^6 + 175505398388141776*x^5 + 2247537209457445*x^4 + 9283317972526*x^3 + 7345712062*x^2 + 376966*x + 1)/(x - 1)^26. (End)

A283032 Number of inequivalent 5 X 5 matrices with entries in {1,2,3,...,n} up to vertical and horizontal reflections.

Original entry on oeis.org

0, 1, 8407040, 211829725395, 281475530358784, 74505821533203125, 7107572245840091136, 335267157313994232775, 9444732983468915425280, 179474497026544179696969, 2500000000502500000000000, 27086764860568185273201371, 238490541617902791488962560
Offset: 0

Views

Author

David Nacin, Feb 27 2017

Keywords

Comments

Cycle index of dihedral group D2 acting on the 25 entries is (2*s(2)^10*s(1)^5 + s(2)^12*s(1) + s(1)^25)/4.

Examples

			For n=2 we get a(2)=8407040 inequivalent 5 X 5 binary matrices up to vertical and horizontal reflections.
		

Crossrefs

Cf. A283028 (4 X 4 version), A282614 (3 X 3 version), A039623 (2 X 2 version).

Programs

  • GAP
    List([0..30], n -> n^13*(n^2+1)*(n^10-n^8+n^6-n^4+n^2+1)/4); # G. C. Greubel, Dec 07 2018
  • Magma
    [n^13*(n^2+1)*(n^10-n^8+n^6-n^4+n^2+1)/4: n in [0..20]]; // G. C. Greubel, Dec 07 2018
    
  • Maple
    [n^13*(n^2+1)*(n^10-n^8+n^6-n^4+n^2+1)/4$n=0..16]; # Muniru A Asiru, Dec 07 2018
  • Mathematica
    Table[n^13*(n^2 + 1)*(n^10- n^8 + n^6 - n^4 + n^2 + 1)/4, {n, 0, 16}]
  • PARI
    a(n) = n^13*(n^2 + 1)*(n^10 - n^8 + n^6 - n^4 + n^2 + 1)/4; \\ Indranil Ghosh, Feb 27 2017
    
  • Python
    def A283032(n): return n**13*(n**2 + 1)*(n**10 - n**8 + n**6 - n**4 + n**2 + 1)/4 # Indranil Ghosh, Feb 27 2017
    
  • Sage
    [n^13*(n^2+1)*(n^10-n^8+n^6-n^4+n^2+1)/4 for n in range(20)] # G. C. Greubel, Dec 07 2018
    

Formula

a(n) = n^13*(n^2 + 1)*(n^10 - n^8 + n^6 - n^4 + n^2 + 1)/4.
From Chai Wah Wu, Dec 07 2018: (Start)
a(n) = 26*a(n-1) - 325*a(n-2) + 2600*a(n-3) - 14950*a(n-4) + 65780*a(n-5) - 230230*a(n-6) + 657800*a(n-7) - 1562275*a(n-8) + 3124550*a(n-9) - 5311735*a(n-10) + 7726160*a(n-11) - 9657700*a(n-12) + 10400600*a(n-13) - 9657700*a(n-14) + 7726160*a(n-15) - 5311735*a(n-16) + 3124550*a(n-17) - 1562275*a(n-18) + 657800*a(n-19) - 230230*a(n-20) + 65780*a(n-21) - 14950*a(n-22) + 2600*a(n-23) - 325*a(n-24) + 26*a(n-25) - a(n-26) for n > 25.
G.f.: x*(x^24 + 8407014*x^23 + 211611142680*x^22 + 275970689783914*x^21 + 67256280546339066*x^20 + 5261349801742569906*x^19 + 173956000842889834744*x^18 + 2848226864171846366430*x^17 + 25488973079778181586319*x^16 + 132928565341114340101276*x^15 + 421347175221451531355376*x^14 + 833653141284854063434884*x^13 + 1044911777483791594156780*x^12 + 833653141284854063434884*x^11 + 421347175221451531355376*x^10 + 132928565341114340101276*x^9 + 25488973079778181586319*x^8 + 2848226864171846366430*x^7 + 173956000842889834744*x^6 + 5261349801742569906*x^5 + 67256280546339066*x^4 + 275970689783914*x^3 + 211611142680*x^2 + 8407014*x + 1)/(x - 1)^26. (End)

A283026 Number of inequivalent 4 X 4 matrices with entries in {1,2,3,..,n} up to row permutations.

Original entry on oeis.org

0, 1, 3876, 1929501, 183181376, 6419043125, 118091211876, 1388168405001, 11745311589376, 77279801651001, 416916712502500, 1915356782994501, 7705740009485376, 27731516944463501, 90762229896563876, 273716119247180625, 768684707117285376, 2027695320242670001
Offset: 0

Views

Author

David Nacin, Feb 27 2017

Keywords

Comments

Cycle index of symmetry group S4 acting on the 16 entries is (6*s(2)^4s(1)^8 + 8*s(3)^4s(1)^4 + 3*s(2)^8 + 6*s(4)^4 + s(1)^{16})/24.

Examples

			For n=2 we get a(2)=3876 inequivalent 4x4 binary matrices up to row permutations.
		

Crossrefs

Cf. A282613, A282614, A283027, A283028, A283029, A283031, A283032, A283033. A283030 (5x5 version). A282612 (3x3 version). A037270 (2x2 version).

Programs

  • Mathematica
    Table[n^4*(n^4 + 1)*(n^4 + 2)*(n^4 + 3)/24,{n,0,30}]
  • PARI
    a(n) = n^4*(n^4 + 1)*(n^4 + 2)*(n^4 + 3)/24; \\ Indranil Ghosh, Feb 27 2017
    
  • Python
    def A283026(n) : return n**4*(n**4 + 1)*(n**4 + 2)*(n**4 + 3)/24 # Indranil Ghosh, Feb 27 2017

Formula

a(n) = n^4*(n^4 + 1)*(n^4 + 2)*(n^4 + 3)/24.
From Chai Wah Wu, Dec 07 2018: (Start)
a(n) = 17*a(n-1) - 136*a(n-2) + 680*a(n-3) - 2380*a(n-4) + 6188*a(n-5) - 12376*a(n-6) + 19448*a(n-7) - 24310*a(n-8) + 24310*a(n-9) - 19448*a(n-10) + 12376*a(n-11) - 6188*a(n-12) + 2380*a(n-13) - 680*a(n-14) + 136*a(n-15) - 17*a(n-16) + a(n-17) for n > 16.
G.f.: -x*(x + 1)*(x^14 + 3858*x^13 + 1859887*x^12 + 149046428*x^11 + 3415692141*x^10 + 29161611758*x^9 + 104450960739*x^8 + 161533106376*x^7 + 104450960739*x^6 + 29161611758*x^5 + 3415692141*x^4 + 149046428*x^3 + 1859887*x^2 + 3858*x + 1)/(x - 1)^17. (End)
Showing 1-7 of 7 results.