A283027
Number of inequivalent 4 X 4 matrices with entries in {1,2,3,...,n} up to rotations.
Original entry on oeis.org
0, 1, 16456, 10763361, 1073758336, 38147070625, 705277897416, 8308234084801, 70368748374016, 463255057977921, 2500000025005000, 11487432519490081, 46221064831264896, 166354152499741921, 544488334821309256, 1642102089568970625, 4611686019501162496
Offset: 0
For n=2 we get a(2)=16456 inequivalent 4 X 4 binary matrices up to rotations.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (17,-136,680,-2380,6188,-12376,19448,-24310,24310,-19448,12376,-6188,2380,-680,136,-17,1).
-
List([0..20], n -> n^4*(n^4+1)*(n^8-n^4+2)/4); # G. C. Greubel, Dec 07 2018
-
[n^4*(n^4+1)*(n^8-n^4+2)/4: n in [0..20]]; // G. C. Greubel, Dec 07 2018
-
[n^4*(n^4+1)*(n^8-n^4+2)/4$n=0..18]; # Muniru A Asiru, Dec 07 2018
-
Table[n^4*(n^4 + 1)*(n^8 - n^4 + 2)/4,{n,0,30}]
-
a(n) = n^4*(n^4 + 1)*(n^8 - n^4 + 2)/4; \\ Indranil Ghosh, Feb 27 2017
-
def A283027(n) : return n**4*(n**4 + 1)*(n**8 - n**4 + 2)/4 # Indranil Ghosh, Feb 27 2017
-
def A283027(n): return n**4*(n**4*(n**8+1)+2)>>2 # Chai Wah Wu, Jan 24 2023
-
[n^4*(n^4+1)*(n^8-n^4+2)/4 for n in range(20)] # G. C. Greubel, Dec 07 2018
A283033
Number of inequivalent 5 X 5 matrices with entries in {1,2,3,...,n} up to rotations and reflections.
Original entry on oeis.org
0, 1, 4211744, 105918450471, 140738033618944, 37252918396015625, 3553786240466361696, 167633579843887699759, 4722366500530551259136, 89737248564744874067889, 1250000000501250002500000, 13543382431328404683826391, 119245270812803151147085824
Offset: 0
For n=2 we get a(2)=4211744 inequivalent 5 X 5 binary matrices up to rotations and reflections.
-
List([0..20], n -> n^7*(n^18+4*n^8+n^6+2)/8); # G. C. Greubel, Dec 07 2018
-
[n^7*(n^18+4*n^8+n^6+2)/8: n in [0..20]]; // G. C. Greubel, Dec 07 2018
-
[n^7*(n^18+4*n^8+n^6+2)/8$n=0..16]; # Muniru A Asiru, Dec 07 2018
-
Table[n^7 (n^18 + 4 n^8 + n^6 + 2)/8, {n, 0, 16}]
-
a(n) = n^7*(n^18 + 4*n^8 + n^6 + 2)/8; \\ Indranil Ghosh, Feb 27 2017
-
def A283033(n): return n**7*(n**18 + 4*n**8 + n**6 + 2)/8 # Indranil Ghosh, Feb 27 2017
-
[n^7*(n^18+4*n^8+n^6+2)/8 for n in range(20)] # G. C. Greubel, Dec 07 2018
A283028
Number of inequivalent 4 X 4 matrices with entries in {1,2,3,...,n} up to vertical and horizontal reflections.
Original entry on oeis.org
0, 1, 16576, 10766601, 1073790976, 38147265625, 705278736576, 8308236966001, 70368756760576, 463255079498001, 2500000075000000, 11487432626662201, 46221065046245376, 166354152907593001, 544488335559184576, 1642102090850390625, 4611686021648613376
Offset: 0
For n=2 we get a(2)=16576 inequivalent 4 X 4 binary matrices up to vertical and horizontal reflections.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (17, -136, 680, -2380, 6188, -12376, 19448, -24310, 24310, -19448, 12376, -6188, 2380, -680, 136, -17, 1).
-
List([0..20], n -> n^8*(n^8+3)/4); # G. C. Greubel, Dec 07 2018
-
[n^8*(n^8+3)/4: n in [0..20]]; // G. C. Greubel, Dec 07 2018
-
[n^8*(n^8+3)/4$n=0..18]; # Muniru A Asiru, Dec 07 2018
-
Table[n^8(n^8 + 3)/4,{n,0,30}]
-
a(n) = n^8 * (n^8 + 3)/4; \\ Altug Alkan, Feb 27 2017
-
def A283028(n): return n**8*(n**8 + 3)/4 # Indranil Ghosh, Feb 27 2017
-
[n^8*(n^8+3)/4 for n in range(20)] # G. C. Greubel, Dec 07 2018
A283029
Number of inequivalent 5 X 5 matrices with entries in {1,2,3,..,n} when a matrix and its transpose are considered equivalent.
Original entry on oeis.org
0, 1, 16793600, 423651479175, 562950490292224, 149011627197265625, 14215144250057342976, 670534312205763205375, 18889465949070766899200, 358948993948871860432449, 5000000000500000000000000, 54173529719030485105622951, 476981083228048575587942400
Offset: 0
For n=2 we get a(2)=16793600 inequivalent 5x5 binary matrices up to the action of transposition.
-
Table[n^15 (n^2 + 1) (n^8 - n^6 + n^4 - n^2 + 1)/2, {n, 0, 12}]
-
a(n) = n^15*(n^2+1)*(n^8-n^6+n^4-n^2+1)/2; \\ Indranil Ghosh, Feb 27 2017
-
def A283029(n): return n**15*(n**2+1)*(n**8-n**6+n**4-n**2+1)/2 # Indranil Ghosh, Feb 27 2017
A283030
Number of inequivalent 5 X 5 matrices with entries in {1,2,3,...,n} up to row permutations.
Original entry on oeis.org
0, 1, 376992, 7355513529, 9474438804480, 2491483056641250, 237223883948569056, 11182222570880983622, 314920519245916176384, 5983496429606726016735, 83341666958337500020000, 902948225666983587054711, 7950004204832195461143552, 58805000552467321853765064
Offset: 0
For n=2 we get a(2)=376992 inequivalent 5 X 5 binary matrices up to row permutations.
-
List([0..20], n -> n^5*(n^20 +10*n^15 +35*n^10 +50*n^5 +24)/120); # G. C. Greubel, Dec 07 2018
-
[n^5*(n^20 +10*n^15 +35*n^10 +50*n^5 +24)/120: n in [0..20]]; // G. C. Greubel, Dec 07 2018
-
[(10*n^20+35*n^15+50*n^10+24*n^5+n^25)/120$n=0..16]; # Muniru A Asiru, Dec 07 2018
-
Table[(10n^20+ 35n^15 + 50n^10 + 24n^5 + n^25)/120, {n, 0, 16}]
-
a(n) = (10*n^20 + 35*n^15 + 50*n^10 + 24*n^5 + n^25)/120; \\ Indranil Ghosh, Feb 27 2017
-
def A283030(n): return (10*n**20 + 35*n**15 + 50*n**10 + 24*n**5 + n**25)/120 # Indranil Ghosh, Feb 27 2017
-
[n^5*(n^20 +10*n^15 +35*n^10 +50*n^5 +24)/120 for n in range(20)] # G. C. Greubel, Dec 07 2018
A283032
Number of inequivalent 5 X 5 matrices with entries in {1,2,3,...,n} up to vertical and horizontal reflections.
Original entry on oeis.org
0, 1, 8407040, 211829725395, 281475530358784, 74505821533203125, 7107572245840091136, 335267157313994232775, 9444732983468915425280, 179474497026544179696969, 2500000000502500000000000, 27086764860568185273201371, 238490541617902791488962560
Offset: 0
For n=2 we get a(2)=8407040 inequivalent 5 X 5 binary matrices up to vertical and horizontal reflections.
-
List([0..30], n -> n^13*(n^2+1)*(n^10-n^8+n^6-n^4+n^2+1)/4); # G. C. Greubel, Dec 07 2018
-
[n^13*(n^2+1)*(n^10-n^8+n^6-n^4+n^2+1)/4: n in [0..20]]; // G. C. Greubel, Dec 07 2018
-
[n^13*(n^2+1)*(n^10-n^8+n^6-n^4+n^2+1)/4$n=0..16]; # Muniru A Asiru, Dec 07 2018
-
Table[n^13*(n^2 + 1)*(n^10- n^8 + n^6 - n^4 + n^2 + 1)/4, {n, 0, 16}]
-
a(n) = n^13*(n^2 + 1)*(n^10 - n^8 + n^6 - n^4 + n^2 + 1)/4; \\ Indranil Ghosh, Feb 27 2017
-
def A283032(n): return n**13*(n**2 + 1)*(n**10 - n**8 + n**6 - n**4 + n**2 + 1)/4 # Indranil Ghosh, Feb 27 2017
-
[n^13*(n^2+1)*(n^10-n^8+n^6-n^4+n^2+1)/4 for n in range(20)] # G. C. Greubel, Dec 07 2018
Showing 1-6 of 6 results.
Comments