A283052 Numbers k such that uphi(k)/phi(k) > uphi(m)/phi(m) for all m < k, where phi(k) is the Euler totient function (A000010) and uphi(k) is the unitary totient function (A047994).
1, 4, 8, 16, 32, 36, 72, 144, 216, 288, 432, 864, 1728, 2592, 3600, 5400, 7200, 10800, 21600, 43200, 64800, 108000, 129600, 216000, 259200, 324000, 529200, 1058400, 2116800, 3175200, 5292000, 6350400, 10584000, 12700800, 15876000, 31752000, 63504000, 95256000
Offset: 1
Keywords
Examples
uphi(k)/phi(k) = 1, 1, 1, 3/2 for k = 1, 2, 3, 4, thus a(1) = 1 and a(2) = 4 since a(4) > a(m) for m < 4.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..46
Crossrefs
Programs
-
Mathematica
uphi[n_] := If[n == 1, 1, (Times @@ (Table[#[[1]]^#[[2]] - 1, {1}] & /@ FactorInteger[n]))[[1]]]; a = {}; rmax = 0; For[k = 0, k < 10^9, k++; r = uphi[k]/EulerPhi[k]; If[r > rmax, rmax = r; a = AppendTo[a, k]]]; a
-
PARI
uphi(n) = my(f = factor(n)); prod(i=1, #f~, f[i,1]^f[i,2]-1); lista(nn) = {my(rmax = 0); for (n=1, nn, if ((newr=uphi(n)/eulerphi(n)) > rmax, print1(n, ", "); rmax = newr););} \\ Michel Marcus, May 20 2017
Comments