cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283091 Maximal order of the trinomials of degree n over GF(2).

Original entry on oeis.org

3, 7, 15, 31, 63, 127, 217, 511, 1023, 2047, 3255, 8001, 11811, 32767, 63457, 131071, 262143, 520065, 1048575, 2097151, 4194303, 8388607, 16766977, 33554431, 67074049, 133693185, 268435455, 536870911, 1073215489, 2147483647, 4292868097, 8589934591, 17179312129
Offset: 2

Views

Author

Keywords

Comments

a(n) is also the maximum length of binary linear recurrence relation b(x) = b(x-m) + b(x-n) mod 2 for all 0 < m < n. Knuth cites unpublished work of G. J. Mitchell & D. P. Moore showing that a(55) = 2^55 - 1 via m = 24.

References

  • D. E. Knuth, The Art of Computer Programming. Vol. 2, Seminumerical Algorithms.

Crossrefs

Cf. A073726.

Programs

  • PARI
    isperiodic(v)=for(k=1,#v-3, for(i=k+1,#v, if(v[i]!=v[i-k], next(2))); return(k))
    T(n,m,len=2^n+7)=my(v=vectorsmall(len)); v[n]=1; for(k=n+1,#v, v[k]=(v[k-n]+v[k-m])%2); v=isperiodic(v); if(v,v,T(n,m,2*len+1))
    a(n)=my(mx=T(n,1)); for(m=2,n-1,mx=max(T(n,m),mx)); mx

Formula

a(n) <= 2^n - 1, with equality if and only if n is a term of A073726.

Extensions

a(26)-a(34) from Hiroaki Yamanouchi, Apr 06 2017