A283152 2-untouchable numbers.
208, 250, 362, 396, 412, 428, 438, 452, 478, 486, 494, 508, 672, 712, 716, 772, 844, 900, 906, 950, 1042, 1048, 1086, 1090, 1112, 1132, 1140, 1252, 1262, 1310, 1338, 1372, 1518, 1548, 1574, 1590, 1592, 1644, 1676, 1678, 1686, 1752, 1756, 1796, 1808, 1810, 1854
Offset: 1
Keywords
Examples
All even numbers less than 208 have a preimage under s2(n), so they are not 2-untouchable. a(1) = 208, because 208 = s(268) but 268 is untouchable. Therefore 208 is not in the image of s2(n). Note that 268 is the only preimage of 208 under s(n). a(2) = 250, because 250 = s(290) but 290 is untouchable. a(3) = 362, because 362 = s(430) = s(718) but both 430 and 718 are untouchable.
Links
- Anton Mosunov, Table of n, a(n) for n = 1..10000
- K. Chum, R. K. Guy, and M. J. Jacobson, Numerical and statistics analysis of aliquot sequences, Exp. Math. 29 (2020) 414-425, Table 4.
- R. K. Guy and J. L. Selfridge, What drives an aliquot sequence?, Math. Comp. 29 (129), 1975, 101-107.
- Paul Pollack and Carl Pomerance, Some problems of Erdos on the sum-of-divisors function, Trans. Amer. Math. Soc., Ser. B, 3 (2016), 1-26.
- Carl Pomerance, The first function and its iterates, A Celebration of the Work of R. L. Graham, S. Butler, J. Cooper, and G. Hurlbert, eds., Cambridge U. Press, to appear.
- Carl Pomerance and Hee-Sung Yang, Variant of a theorem of Erdos on the sum-of-proper-divisors function, Math. Comp., 83 (2014), 1903-1913.
Programs
-
PARI
preim(n) = my(v = []); for (k=1, (n-1)^2, if (sigma(k)-k == n, v = concat(v, k))); v; isunt(n) = if (n==1, 1, for (k=1, (n-1)^2, if (sigma(k)-k == n, return(0))); 1); isok(n) = v = preim(n); if (#v, b = 1; for (k=1, #v, b = b && isunt(v[k])); b, 0); \\ Michel Marcus, Mar 04 2017
Comments