cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283153 Number of set partitions of unique elements from an n X 4 matrix where elements from the same row may not be in the same partition.

Original entry on oeis.org

1, 209, 163121, 326922081, 1346634725665, 9939316337679281, 119802044788535500753, 2205421644124274191535553, 58945667435045762187763602753, 2198513228897522394476415669503377, 110833342180980170285766876408530089329, 7356710448423295420590529054176924329802529, 628972339934967292421997567343442748145219556449
Offset: 1

Views

Author

Marko Riedel, Mar 01 2017

Keywords

Comments

Apparently a duplicate of A071379? - R. J. Mathar, Mar 06 2017

Crossrefs

Programs

  • Mathematica
    Table[(4!^n) * Sum[Binomial[p,4]^n/p! * Sum[(-1)^k/k!,{k,0,4n-p}],{p,1,4n}],{n,1,50}] (* Indranil Ghosh, Mar 04 2017 *)
  • PARI
    a(n) = (4!^n) * sum(p=1, 4*n, binomial(p,4)^n/p! * sum(k=0, 4*n-p, (-1)^k/k!)); \\ Indranil Ghosh, Mar 04 2017

Formula

a(n) = m!^n * Sum_{p=1..n*m} (binomial(p,m)^n/p!) * Sum_{k=0..n*m-p} (-1)^k/k! with m=4.

Extensions

If it is proved that A283153 and A071379 are the same, then the entries should be merged and A283153 recycled. - N. J. A. Sloane, Mar 06 2017