cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283156 Number of preimages of even integers under the sum-of-proper-divisors function.

Original entry on oeis.org

0, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 2, 1, 2, 0, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 0, 2, 2, 1, 0, 1, 2, 1, 2, 4, 2, 2, 1, 2, 1, 1, 0, 1, 0, 1, 1, 2, 1, 3, 2, 1, 3, 1, 1, 0, 2, 2, 2, 3, 2, 1, 1, 0, 1, 2, 1, 2, 1, 1
Offset: 1

Views

Author

Anton Mosunov, Mar 01 2017

Keywords

Comments

Let sigma(n) denote the sum of divisors function, and s(n):=sigma(n)-n. The k-th element a(k) corresponds to the number of solutions to 2k=s(m) in positive integers, where m is a variable. In 2016, C. Pomerance proved that, for every e > 0, the number of solutions is O_e((2k)^{2/3+e}).
Note that for odd numbers n the problem of solving n=s(m) is quite different from the case when n is even. According to a slightly stronger version of Goldbach's conjecture, for every odd number n there exist primes p and q such that n = s(pq) = p + q + 1. This conjecture was verified computationally by Oliveira e Silva to 10^18. Thus the problem is (almost) equivalent to counting the solutions to n=p+q+1 in primes.

Examples

			a(1)=0, because 2*1=s(m) has no solutions;
a(2)=1, because 2*2=s(9);
a(3)=2, because 2*3=s(6)=s(25);
a(4)=2, because 2*4=s(10)=s(49);
a(5)=1, because 2*5=s(14).
		

Crossrefs

Programs

  • PARI
    a(n) =  sum(k=1, (2*n-1)^2, (sigma(k) - k) == 2*n); \\ Michel Marcus, Mar 04 2017

Formula

a(n) = A048138(2*n). - Michel Marcus, Mar 04 2017