A283156 Number of preimages of even integers under the sum-of-proper-divisors function.
0, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 2, 1, 2, 0, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 0, 2, 2, 1, 0, 1, 2, 1, 2, 4, 2, 2, 1, 2, 1, 1, 0, 1, 0, 1, 1, 2, 1, 3, 2, 1, 3, 1, 1, 0, 2, 2, 2, 3, 2, 1, 1, 0, 1, 2, 1, 2, 1, 1
Offset: 1
Keywords
Examples
a(1)=0, because 2*1=s(m) has no solutions; a(2)=1, because 2*2=s(9); a(3)=2, because 2*3=s(6)=s(25); a(4)=2, because 2*4=s(10)=s(49); a(5)=1, because 2*5=s(14).
Links
- Anton Mosunov, Table of n, a(n) for n = 1..10000
- R. K. Guy, J. L. Selfridge, What drives an aliquot sequence?, Math. Comp. 29 (129), 1975, 101-107.
- P. Pollack, C. Pomerance, Some problems of Erdos on the sum-of-divisors function, Trans. Amer. Math. Soc., Ser. B, 3 (2016), 1-26.
- C. Pomerance, The first function and its iterates, A Celebration of the Work of R. L. Graham, S. Butler, J. Cooper, and G. Hurlbert, eds., Cambridge U. Press, to appear.
- C. Pomerance, H.-S. Yang, Variant of a theorem of Erdos on the sum-of-proper-divisors function, Math. Comp., 83 (2014), 1903-1913.T. Oliveira e Silva, Goldbach conjecture verification, 2015.
Programs
-
PARI
a(n) = sum(k=1, (2*n-1)^2, (sigma(k) - k) == 2*n); \\ Michel Marcus, Mar 04 2017
Formula
a(n) = A048138(2*n). - Michel Marcus, Mar 04 2017
Comments