A283190 a(n) is the number of different values n mod k for 1 <= k <= floor(n/2).
0, 1, 1, 1, 2, 1, 2, 2, 2, 3, 4, 2, 3, 3, 3, 4, 5, 4, 5, 4, 4, 5, 6, 5, 6, 7, 7, 7, 8, 6, 7, 7, 7, 8, 9, 8, 9, 9, 9, 10, 11, 9, 10, 9, 9, 10, 11, 10, 11, 12, 12, 12, 13, 12, 13, 13, 13, 14, 15, 13, 14, 14, 14, 15, 16, 15, 16, 15, 15, 16, 17, 16, 17, 17, 17, 17, 18, 17
Offset: 1
Examples
a(7) = 2 because 7=0 (mod 1), 7=1 (mod 2), 7=1 (mod 3), two different results.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Omkar Baraskar and Ingrid Vukusic, Bounds for sets of remainders, arXiv:2508.20853 [math.NT], 2025.
- Michael R Peake, Explanation of limiting value of a(n)/n
Crossrefs
Cf. A048158.
Programs
-
Maple
N:= 100: # to get a(1)..a(N) V:= Vector(N,1): V[1]:= 0: for m from 2 to N-1 do k:= m/min(numtheory:-factorset(m)); ns:= [seq(n,n=m+1..min(N,m+k-1))]; V[ns]:= map(`+`,V[ns],1); od: convert(V,list); # Robert Israel, Mar 13 2017
-
Mathematica
Table[Length@ Union@ Map[Mod[n, #] &, Range@ Floor[n/2]], {n, 78}] (* Michael De Vlieger, Mar 03 2017 *)
-
PARI
a(n) = #vecsort(vector(n\2, k, n % k),,8); \\ Michel Marcus, Mar 02 2017
Comments