cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283238 Expansion of exp( Sum_{n>=1} sigma_2(3*n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, 10, 75, 447, 2335, 10977, 47667, 193775, 745819, 2738568, 9653342, 32821384, 108061167, 345622069, 1076767956, 3275039352, 9743874779, 28405248949, 81256123017, 228383836091, 631427595230, 1718990010867, 4612234492354, 12206598044861, 31889379237288
Offset: 0

Views

Author

Seiichi Manyama, Mar 03 2017

Keywords

Crossrefs

Cf. exp( Sum_{n>=1} sigma_k(3*n)*x^n/n ): A182819 (k=1), this sequence (k=2).
Cf. exp( Sum_{n>=1} sigma_2(m*n)*x^n/n ): A000219 (m=1), A283224 (m=2), this sequence (m=3).

Formula

a(n) = (1/n)*Sum_{k=1..n} sigma_2(3*k)*a(n-k). - Seiichi Manyama, Mar 04 2017