A283336 Expansion of exp( Sum_{n>=1} -sigma_6(n)*x^n/n ) in powers of x.
1, -1, -32, -211, -285, 5179, 44784, 162062, -125122, -5187417, -32587255, -95706881, 122837972, 3039216222, 17745876032, 52825817007, -24340390929, -1256623249600, -7805634068163, -26364952524572, -20649978457115, 368666542515083, 2777231006764690
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
a[n_] := If[n<1, 1,-(1/n) * Sum[DivisorSigma[6, k] a[n - k], {k, n}]]; Table[a[n], {n, 0, 22}] (* Indranil Ghosh, Mar 16 2017 *)
-
PARI
a(n) = if(n<1, 1, -(1/n) * sum(k=1, n, sigma(k, 6) * a(n - k))); for(n=0, 22, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 16 2017
Formula
G.f.: Product_{n>=1} (1 - x^n)^(n^5).
a(n) = -(1/n)*Sum_{k=1..n} sigma_6(k)*a(n-k).