cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283425 Difference between A002110(n) and the largest semiprime b*c < A002110(n) where b is prime(n+1).

Original entry on oeis.org

1, 61, 127, 113, 199, 191, 701, 233, 457, 241, 3701, 557, 3673, 421, 499, 947, 2437, 4349, 8513, 4951, 3229, 937, 4813, 881, 6863, 1499, 2803, 12497, 2029, 88493, 5857, 10853, 28627, 9551, 43691, 85049, 15973, 75209, 4933, 5009, 22613, 14731, 74489, 16993, 90887, 307, 3581, 15083, 12893, 71317, 3583, 1907
Offset: 4

Views

Author

Jamie Morken, May 14 2017

Keywords

Comments

Only these 6 values are not prime numbers up to n=499: 1, 590221, 2807627, 5862793, 39109337, 13116283.
All a(n) are totatives of A002110(n); thus if a(n) < b^2 in the semiprime b*c then a(n) is prime, otherwise a(n) is either prime or semiprime.
The number c is prevprime(p_n# / p_(n+1)), where p_n# = A002110(n). Thus semiprime b*c = A000040(n+1)*prevprime(A002110(n) / A000040(n+1)), and a(n) = A002110(n) - A000040(n+1)*prevprime(A002110(n)/A000040(n+1)). - Michael De Vlieger, May 15 2017

Examples

			Sequence starts at n=4.
For n=5, a(n)=61.
Pn(5): a=2310, b=13, c=173, d=61.
I.e., d = a - (b*c) = 2310 - (13*173) = 2310 - 2249 = 61.
Pn(4): a=210, b=11, c=19, d=1,
Pn(5): a=2310, b=13, c=173, d=61,
Pn(6): a=30030, b=17, c=1759, d=127,
Pn(7): a=510510, b=19, c=26863, d=113,
Pn(8): a=9699690, b=23, c=421717, d=199,
Pn(9): a=223092870, b=29, c=7692851, d=191.
a(n) = a - (b*c) where a(n) has a high probability of being prime, and b*c is the largest semiprime below A002110(n) where b is prime (n+1).
		

Crossrefs

Programs

  • Mathematica
    Table[Function[{P, q}, P - NextPrime[P/q, -1] q] @@ {Product[Prime@ i, {i, n}], Prime[n + 1]}, {n, 4, 55}] (* Michael De Vlieger, May 15 2017 *)

Formula

a(n) = A002110(n) - A000040(n+1)*prevprime(A002110(n)/A000040(n+1)) for n >= 4. - Michael De Vlieger, May 15 2017