cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A286893 Triangle read by rows: T(n,m) is the number of pattern classes in the (n,m)-rectangular grid with 6 colors and n>=m, two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.

Original entry on oeis.org

1, 1, 6, 1, 21, 351, 1, 126, 12096, 2544696, 1, 666, 420876, 544638816, 705278736576, 1, 3996, 15132096, 117564302016, 914040184444416, 7107572245840091136, 1, 23436, 544230576, 25390538401536, 1184595336212990976, 55268479955808421134336, 2578606199622710056510488576
Offset: 0

Views

Author

María Merino, Imanol Unanue, Yosu Yurramendi, May 15 2017

Keywords

Comments

Computed using Burnside's orbit-counting lemma.

Examples

			Triangle begins:
============================================================================
n\m |  0  1     2         3             4                5
----|-----------------------------------------------------------------------
0   |  1
1   |  1  6
2   |  1  21    351
3   |  1  126   12096     2544696
4   |  1  666   420876    544638816     705278736576
5   |  1  3996  15132096  117564302016  914040184444416  7107572245840091136
...
		

Crossrefs

Formula

For even n and m: T(n,m) = (6^(m*n) + 3*6^(m*n/2))/4;
for even n and odd m: T(n,m) = (6^(m*n) + 6^((m*n+n)/2) + 2*6^(m*n/2))/4;
for odd n and even m: T(n,m) = (6^(m*n) + 6^((m*n+m)/2) + 2*6^(m*n/2))/4;
for odd n and m: T(n,m) = (6^(m*n) + 6^((m*n+n)/2) + 6^((m*n+m)/2) + 6^((m*n+1)/2))/4.

A286895 Triangle read by rows: T(n,m) is the number of pattern classes in the (n,m)-rectangular grid with 7 colors and n>=m, two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.

Original entry on oeis.org

1, 1, 7, 1, 28, 637, 1, 196, 30184, 10151428, 1, 1225, 1443001, 3461821825, 8308236966001, 1, 8575, 70656628, 1186972525900, 19948070175962425, 335267157313994232775, 1, 58996, 3460410037, 407106879976216, 47895307855522569001, 5634835073082541702198396, 662932711464914589254954278237
Offset: 0

Views

Author

María Merino, Imanol Unanue, Yosu Yurramendi, May 15 2017

Keywords

Comments

Computed using Burnside's orbit-counting lemma.

Examples

			Triangle begins:
============================================================================
n\m |  0  1    2        3             4                 5
----|-----------------------------------------------------------------------
0   |  1
1   |  1  7
2   |  1  28   637
3   |  1  196  30184    10151428
4   |  1  1225 1443001  3461821825    8308236966001
5   |  1  8575 70656628 1186972525900 19948070175962425 335267157313994232775
...
		

Crossrefs

Formula

For even n and m: T(n,m) = (7^(m*n) + 3*7^(m*n/2))/4;
for even n and odd m: T(n,m) = (7^(m*n) + 7^((m*n+n)/2) + 2*7^(m*n/2))/4;
for odd n and even m: T(n,m) = (7^(m*n) + 7^((m*n+m)/2) + 2*7^(m*n/2))/4;
for odd n and m: T(n,m) = (7^(m*n) + 7^((m*n+n)/2) + 7^((m*n+m)/2) + 7^((m*n+1)/2))/4.

A286919 Triangle read by rows: T(n,m) is the number of pattern classes in the (n,m)-rectangular grid with 8 colors and n>=m, two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.

Original entry on oeis.org

1, 1, 8, 1, 36, 1072, 1, 288, 66816, 33693696, 1, 2080, 4197376, 17184194560, 70368756760576, 1, 16640, 268517376, 8796399206400, 288230393868451840, 9444732983468915425280, 1, 131328, 17180065792, 4503616874348544, 1180591620768950910976, 309485009825866260538195968, 81129638414606695206587887255552
Offset: 0

Views

Author

María Merino, Imanol Unanue, Yosu Yurramendi, May 16 2017

Keywords

Comments

Computed using Burnsides orbit-counting lemma.

Examples

			Triangle begins:
========================================================
n\m |   0   1      2        3             4
----|---------------------------------------------------
0   |   1
1   |   1   8
2   |   1   36     1072
3   |   1   288    66816    33693696
4   |   1   2080   4197376  17184194560   70368756760576
...
		

Crossrefs

Formula

For even n and m: T(n,m) = (8^(m*n) + 3*8^(m*n/2))/4;
for even n and odd m: T(n,m) = (8^(m*n) + 8^((m*n+n)/2) + 2*8^(m*n/2))/4;
for odd n and even m: T(n,m) = (8^(m*n) + 8^((m*n+m)/2) + 2*8^(m*n/2))/4;
for odd n and m: T(n,m) = (8^(m*n) + 8^((m*n+n)/2) + 8^((m*n+m)/2) + 8^((m*n+1)/2))/4.

A286920 Triangle read by rows: T(n,m) is the number of pattern classes in the (n,m)-rectangular grid with 9 colors and n>=m, two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.

Original entry on oeis.org

1, 1, 9, 1, 45, 1701, 1, 405, 134865, 97135605, 1, 3321, 10766601, 70618411521, 463255079498001, 1, 29889, 871858485, 51473762336565, 3039416437115008521, 179474497026544179696969, 1, 266085, 70607782701, 37523729625344145, 19941610769429949618201, 10597789568841677482963905405, 5632099886234793715531013441442501
Offset: 0

Views

Author

María Merino, Imanol Unanue, Yosu Yurramendi, May 16 2017

Keywords

Comments

Computed using Burnsides orbit-counting lemma.

Examples

			Triangle begins:
==========================================================
n\m |   0   1     2         3              4
----|-----------------------------------------------------
0   |   1
1   |   1   9
2   |   1   45    1701
3   |   1   405   134865    97135605
4   |   1   3321  10766601  70618411521    463255079498001
...
		

Crossrefs

Formula

For even n and m: T(n,m) = (9^(m*n) + 3*9^(m*n/2))/4;
for even n and odd m: T(n,m) = (9^(m*n) + 9^((m*n+n)/2) + 2*9^(m*n/2))/4;
for odd n and even m: T(n,m) = (9^(m*n) + 9^((m*n+m)/2) + 2*9^(m*n/2))/4;
for odd n and m: T(n,m) = (9^(m*n) + 9^((m*n+n)/2) + 9^((m*n+m)/2) + 9^((m*n+1)/2))/4.

A286921 Triangle read by rows: T(n,m) is the number of pattern classes in the (n,m)-rectangular grid with 10 colors and n>=m, two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.

Original entry on oeis.org

1, 1, 10, 1, 55, 2575, 1, 550, 253000, 250525000, 1, 5050, 25007500, 250025500000, 2500000075000000, 1, 50500, 2500300000, 250002775000000, 25000000255000000000, 2500000000502500000000000, 1, 500500, 250000750000, 250000250500000000, 250000000000750000000000, 250000000000250500000000000000, 250000000000000000750000000000000000
Offset: 0

Views

Author

María Merino, Imanol Unanue, Yosu Yurramendi, May 16 2017

Keywords

Comments

Computed using Burnsides orbit-counting lemma.

Examples

			Triangle begins:
==============================================================
n\m |   0   1      2          3              4
----|---------------------------------------------------------
0   |   1
1   |   1   10
2   |   1   55     2575
3   |   1   550    253000     250525000
4   |   1   5050   25007500   250025500000   2500000075000000
...
		

Crossrefs

Formula

For even n and m: T(n,m) = (10^(m*n) + 3*10^(m*n/2))/4;
for even n and odd m: T(n,m) = (10^(m*n) + 10^((m*n+n)/2) + 2*10^(m*n/2))/4;
for odd n and even m: T(n,m) = (10^(m*n) + 10^((m*n+m)/2) + 2*10^(m*n/2))/4;
for odd n and m: T(n,m) = (10^(m*n) + 10^((m*n+n)/2) + 10^((m*n+m)/2) + 10^((m*n+1)/2))/4.
Showing 1-5 of 5 results.