cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283442 a(n) = lcm(n,5) / gcd(n,5).

Original entry on oeis.org

0, 5, 10, 15, 20, 1, 30, 35, 40, 45, 2, 55, 60, 65, 70, 3, 80, 85, 90, 95, 4, 105, 110, 115, 120, 5, 130, 135, 140, 145, 6, 155, 160, 165, 170, 7, 180, 185, 190, 195, 8, 205, 210, 215, 220, 9, 230, 235, 240, 245, 10, 255, 260, 265, 270, 11, 280, 285, 290
Offset: 0

Views

Author

Colin Barker, Mar 07 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[LCM[n, 5] / GCD[n, 5], {n,0,58}] (* Indranil Ghosh, Mar 08 2017 *)
    LinearRecurrence[{0,0,0,0,2,0,0,0,0,-1},{0,5,10,15,20,1,30,35,40,45},60] (* Harvey P. Dale, Aug 11 2019 *)
  • PARI
    concat(0, Vec(x*(5 + 10*x + 15*x^2 + 20*x^3 + x^4 + 20*x^5 + 15*x^6 + 10*x^7 + 5*x^8) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)^2) + O(x^100)))
    
  • PARI
    {for (n=0, 58, print1((lcm(n, 5) / gcd(n, 5)),", "))}; \\ Indranil Ghosh, Mar 08 2017

Formula

G.f.: x*(5 + 10*x + 15*x^2 + 20*x^3 + x^4 + 20*x^5 + 15*x^6 + 10*x^7 + 5*x^8) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)^2).
a(n) = A109046(n) / A109009(n).
a(n) = 2*a(n-5) - a(n-10) for n>9.
Sum_{k=1..n} a(k) ~ (101/50)*n^2. - Amiram Eldar, Oct 07 2023