A283453 The smallest square referenced in A249025 (Numbers k such that 3^k - 1 is not squarefree).
4, 4, 121, 4, 4, 4, 4, 4, 121, 4, 4, 4, 4, 4, 121, 4, 4, 4, 4, 4, 121, 4, 4, 169, 4, 4, 4, 121, 4, 4, 4, 4, 4, 121, 4, 4, 4, 4, 4, 121, 4, 4, 4, 4, 4, 121, 4, 4, 4, 4, 4, 121, 4, 4, 4, 4, 4, 121, 4, 4, 4, 4, 4, 121, 4, 4, 4, 4, 4, 121, 4, 169, 4, 4, 4, 4, 121
Offset: 1
Keywords
Examples
A249025(3)=5, 3^5-1 = 242 = 2*11*11. 242 is not squarefree the square being 11*11 = 121.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..407
Programs
-
Mathematica
psq[n_] := If[(f = Select[FactorInteger[n], Last[#] > 1 &]) == {}, 1, f[[1, 1]]^2]; psq /@ Select[3^Range[100] - 1, !SquareFreeQ[#] &] (* Amiram Eldar, Feb 12 2021 *)
-
PARI
lista(nn) = {for (n=1, nn, if (!issquarefree(k = 3^n-1), f = factor(k/core(k)); vsq = select(x->((x%2) == 0), f[,2], 1); print1(f[vsq[1], 1]^2, ", ");););} \\ Michel Marcus, Mar 11 2017
Formula
a(n) = A283454(n)^2. - Amiram Eldar, Feb 12 2021
Extensions
More terms from Michel Marcus, Mar 11 2017