A280706 a(n) = Sum_{k=1..n} q(k+1-q(k)), where q(k) = A005185(k); partial sums of A283467.
1, 2, 3, 4, 6, 8, 10, 13, 16, 19, 23, 26, 30, 35, 39, 44, 49, 54, 60, 66, 72, 78, 86, 92, 100, 108, 116, 124, 132, 142, 150, 159, 169, 179, 189, 200, 211, 221, 232, 243, 254, 266, 278, 290, 302, 314, 330, 340, 354, 368, 380, 394, 410, 424, 438, 454, 468, 484, 500, 516, 532, 552, 568, 585, 606, 622, 639, 658, 678, 698, 719, 740
Offset: 1
Keywords
Links
Programs
-
Mathematica
a[1] = a[2] = 1; a[n_] := a[n] = a[n - a[n - 1]] + a[n - a[n - 2]]; Accumulate@ Table[a[n + 1 - a[n]], {n, 72}] (* Michael De Vlieger, Mar 22 2017 *)
-
PARI
a(n) = if(n<3, 1, a(n - a(n - 1)) + a(n - a(n - 2))); for(n=1, 72, print1(sum(k=1, n, a(k + 1 - a(k))),", ")) \\ Indranil Ghosh, Mar 22 2017
-
Scheme
;; Code for A005185 given under that entry. ;; With memoization-macro definec: (definec (A280706 n) (if (= 1 n) 1 (+ (A280706 (- n 1)) (A283467 n)))) ;; As an explicit sum (slower): (define (A280706 n) (add (lambda (k) (A005185 (- (+ k 1) (A005185 k)))) 1 n)) ;; Implements sum_{i=lowlim..uplim} intfun(i) (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i)))))))
Comments