A283486 Number of k such that sigma(k) = 2n where sigma(m) = A000203(m) is the sum of the divisors of m.
0, 1, 1, 1, 0, 2, 1, 0, 2, 1, 0, 3, 0, 1, 1, 2, 0, 1, 1, 1, 3, 1, 0, 3, 0, 0, 2, 2, 0, 3, 1, 0, 0, 1, 0, 5, 1, 0, 1, 2, 0, 3, 0, 0, 3, 0, 0, 4, 2, 0, 1, 2, 0, 2, 1, 1, 2, 0, 0, 4, 0, 2, 2, 2, 0, 2, 0, 0, 1, 2, 0, 5, 0, 0, 1, 2, 0, 2, 1, 1, 1, 1, 0, 6, 0, 0, 1, 1, 0, 4, 2, 0, 2, 0, 0, 5
Offset: 1
Keywords
Examples
a(12) = 3 because sigma(14) = 1 + 2 + 7 + 14 = 24, sigma(15) = 1 + 3 + 5 + 15 = 24 and sigma(23) = 1 + 23 = 24.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
PARI
first(n)=my(v=vector(n),t);for(k=1,2*n-1, t=sigma(k)/2; if(t<=n && denominator(t)==1, v[t]++)); v \\ Charles R Greathouse IV, Mar 08 2017
Formula
a(n) = A054973(2n) - Michel Marcus, Mar 08 2017.
Extensions
a(96) corrected by Charles R Greathouse IV, Mar 08 2017
Comments