cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A283507 Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 641", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 0, 5, 3, 23, 15, 95, 63, 383, 255, 1535, 1023, 6143, 4095, 24575, 16383, 98303, 65535, 393215, 262143, 1572863, 1048575, 6291455, 4194303, 25165823, 16777215, 100663295, 67108863, 402653183, 268435455, 1610612735, 1073741823, 6442450943, 4294967295
Offset: 0

Views

Author

Robert Price, Mar 09 2017

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 641; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 2], {i ,1, stages - 1}]

Formula

Conjectures from Colin Barker, Mar 10 2017: (Start)
G.f.: (1 - x + x^2 + 2*x^3) / ((1 - x)*(1 - 2*x)*(1 + 2*x)).
a(n) = (-2 + (-2)^n + 2^(1+n)) / 2 for n>0.
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) for n>3.
(End)

A283504 Binary representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 641", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 0, 101, 1100, 11101, 111100, 1111101, 11111100, 111111101, 1111111100, 11111111101, 111111111100, 1111111111101, 11111111111100, 111111111111101, 1111111111111100, 11111111111111101, 111111111111111100, 1111111111111111101, 11111111111111111100
Offset: 0

Views

Author

Robert Price, Mar 09 2017

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 641; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[1, i]], 10], {i, 1, stages - 1}]

Formula

Conjectures from Colin Barker, Mar 10 2017: (Start)
G.f.: (1 - 10*x + 100*x^2 + 100*x^3) / ((1 - x)*(1 + x)*(1 - 10*x)).
a(n) = (10^(n+1) - 91) / 9 for n>0 and even.
a(n) = (10^(n+1) - 100) / 9 for n odd.
a(n) = 10*a(n-1) + a(n-2) - 10*a(n-3) for n>3.
(End)

A283506 Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 641", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 0, 5, 12, 29, 60, 125, 252, 509, 1020, 2045, 4092, 8189, 16380, 32765, 65532, 131069, 262140, 524285, 1048572, 2097149, 4194300, 8388605, 16777212, 33554429, 67108860, 134217725, 268435452, 536870909, 1073741820, 2147483645, 4294967292, 8589934589
Offset: 0

Views

Author

Robert Price, Mar 09 2017

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 641; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[1, i]], 2], {i, 1, stages - 1}]

Formula

Conjectures from Colin Barker, Mar 10 2017: (Start)
G.f.: (1 - 2*x + 4*x^2 + 4*x^3) / ((1 - x)*(1 + x)*(1 - 2*x)).
a(n) = 2^(n+1) - 3 for n>0 and even.
a(n) = 2^(n+1) - 4 for n odd.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n>3.
(End)

A290072 Binary representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 641", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 1, 101, 11, 10111, 1111, 1011111, 111111, 101111111, 11111111, 10111111111, 1111111111, 1011111111111, 111111111111, 101111111111111, 11111111111111, 10111111111111111, 1111111111111111, 1011111111111111111, 111111111111111111, 101111111111111111111
Offset: 0

Views

Author

Robert Price, Jul 19 2017

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 641; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]

Formula

Conjectures from Colin Barker, Jul 20 2017: (Start)
G.f.: (1 - 90*x^3 + 100*x^4) / ((1 - x)*(1 - 10*x)*(1 + 10*x)).
a(n) = a(n-1) + 100*a(n-2) - 100*a(n-3) =A283505(n) for n>4.
(End)
Showing 1-4 of 4 results.