cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283528 The number of phi-partitions of n.

Original entry on oeis.org

0, 0, 1, 1, 2, 0, 3, 4, 8, 2, 4, 1, 5, 8, 24, 24, 6, 2, 7, 15, 107, 46, 8, 4, 135, 101, 347, 83, 9, 0, 10, 460, 1019, 431, 1308, 13, 11, 842, 2760, 214, 12, 2, 13, 1418, 5124, 2977, 14, 42, 2021, 720, 17355, 4997, 15, 70, 21108, 3674, 40702, 16907, 16, 1, 17
Offset: 1

Views

Author

R. J. Mathar, Mar 10 2017

Keywords

Comments

The number of partitions n = a1+a2+...+ak which have at least two parts and obey phi(n) = phi(a1)+phi(a2)+...+phi(ak). phi(.) = A000010(.) is Euler's totient. The trivial result with one part, n=a1, is not counted; that would induce another sequence with terms a(n)+1.

Examples

			a(7) = 3 counts the partitions 1+1+1+1+1+2 = 1+1+1+1+3 = 1+1+5.
a(8) = 4 counts the partitions 2+2+2+2 = 2+2+4 = 4+4 = 1+1+6.
		

Crossrefs

Programs

  • Maple
    A283528 := proc(n)
        local a,k,phip ;
        a := 0 ;
        for k in combinat[partition](n) do
            if nops(k) > 1 then
                phip := add( numtheory[phi](p),p =k) ;
                if phip = numtheory[phi](n) then
                    a := a+1 ;
                end if;
            end if;
        end do:
        a ;
    end proc:
    # second Maple program:
    with(numtheory):
    b:= proc(n, m, i) option remember; `if`(n=0,
          `if`(m=0, 1, 0), `if`(i<1 or m<0, 0, b(n, m, i-1)+
          `if`(i>n, 0, b(n-i, m-phi(i), i))))
        end:
    a:= n-> b(n, phi(n), n)-1:
    seq(a(n), n=1..70);  # Alois P. Heinz, Mar 10 2017
  • Mathematica
    Table[ Length@ IntegerPartitions[n 10^7 + EulerPhi[n], {2, Infinity},
    EulerPhi@ Range[n-1] + 10^7 Range[n-1]], {n, 60}] (* Giovanni Resta, Mar 10 2017 *)
    b[n_, m_, i_] := b[n, m, i] = If[n == 0,
         If[m == 0, 1, 0], If[i < 1 || m < 0, 0, b[n, m, i - 1] +
         If[i > n, 0, b[n - i, m - EulerPhi[i], i]]]];
    a[n_] := b[n, EulerPhi[n], n]-1;
    Array[a, 70] (* Jean-François Alcover, Jun 01 2021, after Alois P. Heinz *)

Extensions

a(56)-a(61) from Giovanni Resta, Mar 10 2017