A283530 The number of reduced phi-partitions of n.
0, 0, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 2, 3, 3, 1, 1, 2, 3, 3, 3, 1, 0, 1, 5, 4, 4, 3, 2, 1, 5, 4, 4, 1, 1, 1, 6, 6, 7, 1, 3, 2, 6, 5, 8, 1, 3, 4, 8, 6, 10, 1, 1, 1, 11, 9, 12, 5, 2, 1, 12, 8, 5, 1, 5, 1, 14, 13, 14, 5, 3, 1, 13, 9, 16, 1, 1
Offset: 1
Keywords
Examples
a(15)=2 counts 1+2+2+2+2+2+2= 1+1+1+2+2+2+6. a(16)=3 counts 2+2+2+2+2+2+2+2 = 1+1+2+2+2+2+6 = 1+1+1+1+6+6.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from Giovanni Resta)
- J. Wang, Reduced phi-partitions of positive integers, Fib. Quart. 31 (4) (1993) 365-369.
- J. Wang, X. Wang, On the set of reduced phi-partitions of a positive integer, Fib. Quart. 44 (2) (2006) 98-102.
Programs
-
Maple
isA002110 := proc(n) member(n,[1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810, 304250263527210, 13082761331670030, 614889782588491410, 32589158477190044730, 1922760350154212639070]) ; end proc: A283530 := proc(n) local a,k,issimp,p ; a := 0 ; for k in combinat[partition](n) do issimp := true ; for p in k do if not isA002110(p) then issimp := false; break; end if; end do: if issimp and nops(k) > 1 then phip := add(numtheory[phi](p),p=k) ; if phip = numtheory[phi](n) then a := a+1 ; end if; end if; end do: a ; end proc:
-
Mathematica
v={1,2,6,30,210}; e=10^9 v + EulerPhi@v; a[n_] := Length@ IntegerPartitions[ 10^9 n + EulerPhi[n], {2, Infinity}, e]; Array[a, 100] (* suitable for n <= 1000, Giovanni Resta, Mar 10 2017 *)
Formula
a(A002110(k)) = 0. [Wang]
Comments