cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283530 The number of reduced phi-partitions of n.

Original entry on oeis.org

0, 0, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 2, 3, 3, 1, 1, 2, 3, 3, 3, 1, 0, 1, 5, 4, 4, 3, 2, 1, 5, 4, 4, 1, 1, 1, 6, 6, 7, 1, 3, 2, 6, 5, 8, 1, 3, 4, 8, 6, 10, 1, 1, 1, 11, 9, 12, 5, 2, 1, 12, 8, 5, 1, 5, 1, 14, 13, 14, 5, 3, 1, 13, 9, 16, 1, 1
Offset: 1

Views

Author

R. J. Mathar, Mar 10 2017

Keywords

Comments

The reduced phi-partitions of n are partitions n= a_1 +a_2 +a_3 +... +a_k into at least 2 parts such that each part is simple (i.e. each part in A002110, as required in A283529) and such that in addition phi(n) = sum_i phi(a_i), as required in A283528. phi(.) = A000010(.) is Euler's totient.
Numbers n where a(n)=1 are called semisimple. 3, 4, 5, 7, 9, 10, 11, 12, 13, 17, 18, 19, 23, 24,... are semisimple (see A283320). In this list of semisimple numbers there are no odd numbers besides 9 and the odd primes.

Examples

			a(15)=2 counts 1+2+2+2+2+2+2= 1+1+1+2+2+2+6.
a(16)=3 counts 2+2+2+2+2+2+2+2 = 1+1+2+2+2+2+6 = 1+1+1+1+6+6.
		

Crossrefs

Programs

  • Maple
    isA002110 := proc(n)
        member(n,[1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810, 304250263527210, 13082761331670030, 614889782588491410, 32589158477190044730, 1922760350154212639070]) ;
    end proc:
    A283530 := proc(n)
        local a,k,issimp,p ;
        a := 0 ;
        for k in combinat[partition](n) do
            issimp := true ;
            for p in k do
                if not isA002110(p) then
                    issimp := false;
                    break;
                end if;
            end do:
            if issimp and nops(k) > 1 then
                phip := add(numtheory[phi](p),p=k) ;
                if phip = numtheory[phi](n) then
                    a := a+1 ;
                end if;
            end if;
        end do:
        a ;
    end proc:
  • Mathematica
    v={1,2,6,30,210}; e=10^9 v + EulerPhi@v; a[n_] := Length@ IntegerPartitions[ 10^9 n + EulerPhi[n], {2, Infinity}, e]; Array[a, 100] (* suitable for n <= 1000, Giovanni Resta, Mar 10 2017 *)

Formula

a(A002110(k)) = 0. [Wang]