cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A283562 Primes of the form (p^2 - q^2) / 24 with primes p > q > 3.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 23, 37, 43, 47, 53, 67, 73, 97, 103, 107, 113, 127, 137, 157, 163, 167, 173, 193, 223, 233, 257, 263, 277, 283, 293, 313, 337, 347, 353, 373, 397, 433, 443, 467, 487, 523, 547, 563, 577, 593, 607, 613, 617, 643, 647, 653, 733, 743, 757, 773, 787, 797, 887, 907, 937, 947, 953, 977
Offset: 1

Views

Author

Altug Alkan and Thomas Ordowski, Mar 11 2017

Keywords

Comments

Note that p - q must be <= 12. Also note that there can be corresponding prime pairs (q, p) more than one way, i.e., (7, 13), (13, 17), (29, 31): (13^2 - 7^2)/24 = (17^2 - 13^2)/24 = (31^2 - 29^2)/24 = 5.
There are no terms of A045468 > 11.
Union of {2}, A006489, A060212, A092110, and A125272. - Robert Israel, Mar 13 2017

Examples

			3 is a term since (11^2 - 7^2)/24 = 3 and 3, 7, 11 are prime numbers.
		

Crossrefs

Programs

  • Maple
    select(r -> isprime(r) and ((isprime(3*r+2) and isprime(3*r-2))
      or (isprime(6*r+1) and isprime(6*r-1))
      or (isprime(2*r+3) and isprime(2*r-3))
    or (isprime(r+6) and isprime(r-6))), [2,seq(i,i=3..1000,2)]); # Robert Israel, Mar 13 2017
  • Mathematica
    ok[n_] := PrimeQ[n] && Block[{p, q, s = Reduce[p^2-q^2 == 24 n && p>3 && q>3, {p, q}, Integers]}, If[s === {}, False, Or @@ And @@@ PrimeQ[{p, q} /. List@ ToRules@s]]]; Select[Range@1000, ok] (* Giovanni Resta, Mar 11 2017 *)
  • PARI
    isA124865(n) = if(n%24, isprimepower(n+4)==2 || isprimepower(n+9)==2, fordiv(n/4, d, if(isprime(n/d/4+d) && isprime(n/d/4-d), return(1))); 0)
    lista(nn) = forprime(p=2, nn, if(isA124865(24*p), print1(p", ")))

Formula

For n > 5, a(n) == {3,7} mod 10.
Showing 1-1 of 1 results.