cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A288890 Primes of the form k!4+2, where k!4 is the quadruple factorial number (A007662).

Original entry on oeis.org

3, 5, 7, 23, 47, 233, 587, 3467, 65837, 40883537, 151412627, 1267389587, 74389431691577, 885821206052908127, 13005556505149168230729834377, 583723376551025432768079734666930727861956890308512536691015627
Offset: 1

Views

Author

Robert Price, Jun 18 2017

Keywords

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 4] + 2, {i, 0, 100}], PrimeQ[#]&]
    Select[Table[Times@@Range[k,1,-4]+2,{k,150}],PrimeQ] (* Harvey P. Dale, Nov 24 2024 *)

A328454 Numbers k such that k![4] - 4 is prime, where k![4] = A007662(k) = quadruple factorial.

Original entry on oeis.org

7, 9, 11, 15, 17, 19, 39, 45, 57, 59, 63, 69, 81, 85, 127, 141, 149, 153, 163, 165, 201, 235, 259, 377, 457, 649, 815, 897, 1057, 1433, 1453, 1519, 1759, 3047, 3561, 4151, 7025, 11917, 11971, 15295, 18919, 19449, 20765, 70385, 71293
Offset: 1

Views

Author

Robert Price, Nov 06 2019

Keywords

Comments

a(46) > 10^5.
The first 6 primes associated with this sequence are: 17, 41, 227, 3461, 9941, 65831.

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[1000], (x = MultiFactorial[#, 4] - 4; x > 0 && PrimeQ[x]) &]

A329112 Numbers k such that k![4] - 8 is prime, where k![4] = A007662(k) = quadruple factorial.

Original entry on oeis.org

7, 9, 11, 13, 15, 19, 21, 23, 29, 35, 37, 55, 57, 77, 85, 139, 243, 251, 433, 667, 671, 895, 2127, 2263, 2293, 2645, 2733, 2845, 3675, 4381, 6453, 6825, 36557, 78531
Offset: 1

Views

Author

Robert Price, Nov 06 2019

Keywords

Comments

a(35) > 10^5.
The first 6 primes associated with this sequence are: 13, 37, 223, 577, 3457, 65827.

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[1000], (x = MultiFactorial[#, 4] - 8; x > 0 && PrimeQ[x]) &]

A329166 Numbers k such that k![4] - 16 is prime, where k![4] = A007662(k) = quadruple factorial.

Original entry on oeis.org

7, 9, 13, 15, 17, 29, 31, 35, 39, 105, 109, 147, 173, 239, 287, 293, 505, 711, 837, 947, 1015, 1025, 1977, 2917, 4035, 4935, 5935, 7693, 10911, 11367, 12029, 14155, 15221, 17921, 17961, 20521, 23053, 32821, 45147, 45351, 68057, 78315
Offset: 1

Views

Author

Robert Price, Nov 06 2019

Keywords

Comments

a(43) > 10^5.
The first 5 primes associated with this sequence are: 5, 29, 569, 3449, 9929.

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[1000], (x = MultiFactorial[#, 4] - 16; x > 0 && PrimeQ[x]) &]

A329167 Numbers k such that k![4] - 32 is prime, where k![4] = A007662(k) = quadruple factorial.

Original entry on oeis.org

9, 11, 15, 25, 29, 47, 55, 67, 119, 171, 331, 475, 549, 819, 1151, 1543, 2303, 2749, 3303, 3649, 4065, 4261, 4497, 4873, 9105, 12749, 18677, 20121, 22459, 32489, 35765, 46971, 75843, 79585, 79731
Offset: 1

Views

Author

Robert Price, Nov 06 2019

Keywords

Comments

a(36) > 10^5.
The first 4 primes associated with this sequence are: 13, 199, 3433, 5221093.

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[1000], (x = MultiFactorial[#, 4] - 32; x > 0 && PrimeQ[x]) &]

A329175 Numbers k such that k![4] - 64 is prime, where k![4] = A007662(k) = quadruple factorial.

Original entry on oeis.org

11, 13, 41, 45, 59, 85, 141, 283, 357, 419, 713, 1149, 1353, 1537, 1669, 2353, 2389, 2543, 5147, 5279, 12801, 30035, 39421, 46969, 61077
Offset: 1

Views

Author

Robert Price, Nov 07 2019

Keywords

Comments

a(26) > 10^5.
The first 3 primes associated with this sequence are: 167, 521, 7579867420061.

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[1000], (x = MultiFactorial[#, 4] - 64; x > 0 && PrimeQ[x]) &]

A329176 Numbers k such that k![4] - 128 is prime, where k![4] = A007662(k) = quadruple factorial.

Original entry on oeis.org

11, 13, 17, 19, 25, 27, 29, 41, 47, 61, 75, 113, 181, 251, 287, 339, 521, 533, 573, 687, 739, 1015, 1243, 1811, 2073, 2851, 2939, 3421, 4055, 4211, 4477, 5219, 6151, 8851, 9251, 14219, 17123, 21703, 24313, 25053, 28811, 33065, 49305, 50775, 52693, 69805, 82077, 87771
Offset: 1

Views

Author

Robert Price, Nov 07 2019

Keywords

Comments

a(49) > 10^5.
The first 5 primes associated with this sequence are: 103, 457, 9817, 65707, 5220997.

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[1000], (x = MultiFactorial[#, 4] - 128; x > 0 && PrimeQ[x]) &]
    Select[Range[10,90000],PrimeQ[Times@@Range[#,1,-4]-128]&] (* Harvey P. Dale, May 13 2022 *)

A329177 Numbers k such that k![4] - 256 is prime, where k![4] = A007662(k) = quadruple factorial.

Original entry on oeis.org

15, 17, 19, 21, 23, 25, 33, 39, 41, 43, 53, 63, 67, 73, 157, 167, 181, 195, 221, 327, 363, 419, 849, 861, 1233, 1265, 1599, 2413, 2515, 4009, 8291, 8475, 10685, 13957, 17453, 18409, 19117, 22739, 33313, 37861, 59703, 64983, 80697
Offset: 1

Views

Author

Robert Price, Nov 07 2019

Keywords

Comments

a(44) > 10^5.
The first 5 primes associated with this sequence are: 3209, 9689, 65579, 208589, 1513949.

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[1000], (x = MultiFactorial[#, 4] - 256; x > 0 && PrimeQ[x]) &]
    Select[Range[10,1600],PrimeQ[Times@@Range[#,1,-4]-256]&] (* The program generates the first 27 terms of the sequence. To generate more, increase the second Range constant but the program may take a long time to run. *) (* Harvey P. Dale, Aug 01 2022 *)

A329183 Numbers k such that k![4] - 512 is prime, where k![4] = A007662(k) = quadruple factorial.

Original entry on oeis.org

13, 15, 17, 19, 21, 23, 25, 35, 39, 47, 67, 71, 89, 93, 113, 153, 163, 185, 201, 267, 427, 491, 871, 1645, 3075, 3351, 3435, 5385, 7893, 10649, 15597, 44641, 50039, 57269, 67647, 83061, 89717
Offset: 1

Views

Author

Robert Price, Nov 07 2019

Keywords

Comments

a(38) > 10^5.
The first 5 primes associated with this sequence are: 73, 2953, 9433, 65323, 208333.

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[1000], (x = MultiFactorial[#, 4] - 512; x > 0 && PrimeQ[x]) &]

A329184 Numbers k such that k![4] - 1024 is prime, where k![4] = A007662(k) = quadruple factorial.

Original entry on oeis.org

15, 19, 21, 25, 27, 33, 47, 51, 55, 85, 95, 153, 163, 187, 191, 315, 335, 363, 375, 419, 433, 669, 873, 1097, 1113, 1235, 1819, 1969, 2043, 2391, 2493, 3639, 4433, 5527, 6423, 9441, 14099, 24607, 27057, 62271, 98079
Offset: 1

Views

Author

Robert Price, Nov 07 2019

Keywords

Comments

a(42) > 10^5.
The first 5 primes associated with this sequence are: 2441, 64811, 207821, 5220101, 40882511.

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[1000], (x = MultiFactorial[#, 4] - 1024; x > 0 && PrimeQ[x]) &]
Showing 1-10 of 10 results.