A283556 Digital root of the sum of the first n primes.
0, 2, 5, 1, 8, 1, 5, 4, 5, 1, 3, 7, 8, 4, 2, 4, 3, 8, 6, 1, 9, 1, 8, 1, 9, 7, 9, 4, 3, 4, 9, 1, 6, 8, 3, 8, 6, 1, 2, 7, 9, 8, 9, 2, 6, 5, 6, 1, 8, 1, 5, 4, 9, 7, 6, 2, 4, 3, 4, 2, 4, 8, 4, 5, 1, 8, 1, 8, 3, 8, 6, 8, 7, 5, 9, 1, 6, 8, 9, 5, 9, 5, 3, 2, 3, 1, 3, 2, 9, 2, 6, 5, 7, 8, 4, 8, 7, 3, 2, 3
Offset: 0
Examples
For n=3, a(3)=1 because the sum of the first 3 primes is 10 and the sum of digits of 10 is 1.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Programs
-
Maple
0, op(subs(0=9, ListTools:-PartialSums(select(isprime, [2,seq(i,i=3..1000,2)])) mod 9)); # Robert Israel, Mar 30 2017
-
Mathematica
With[{nn = 78}, {0}~Join~Table[NestWhile[Total@ IntegerDigits@ # &, #, # >= 10 &] &@ Total@ Take[#, n], {n, nn}] &@ Array[Prime, nn]] (* Michael De Vlieger, Mar 15 2017 *)
-
PARI
{ p=0;print1(p", "); forprime(n=2,1000, p+=n; while(p>9,p=sumdigits(p)) ;print1(p", ") ) }
-
Python
from sympy import primerange from itertools import accumulate prime_sum = [0] + list(accumulate(primerange(2, 1000))) def dig_root(n): return 1+(n-1)%9 def a(n): return 0 if n<1 else dig_root(prime_sum[n]) print([a(n) for n in range(101)]) # Indranil Ghosh, Mar 30 2017
Extensions
Corrected by Robert Israel, Mar 30 2017