cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283556 Digital root of the sum of the first n primes.

Original entry on oeis.org

0, 2, 5, 1, 8, 1, 5, 4, 5, 1, 3, 7, 8, 4, 2, 4, 3, 8, 6, 1, 9, 1, 8, 1, 9, 7, 9, 4, 3, 4, 9, 1, 6, 8, 3, 8, 6, 1, 2, 7, 9, 8, 9, 2, 6, 5, 6, 1, 8, 1, 5, 4, 9, 7, 6, 2, 4, 3, 4, 2, 4, 8, 4, 5, 1, 8, 1, 8, 3, 8, 6, 8, 7, 5, 9, 1, 6, 8, 9, 5, 9, 5, 3, 2, 3, 1, 3, 2, 9, 2, 6, 5, 7, 8, 4, 8, 7, 3, 2, 3
Offset: 0

Views

Author

Dimitris Valianatos, Mar 10 2017

Keywords

Examples

			For n=3, a(3)=1 because the sum of the first 3 primes is 10 and the sum of digits of 10 is 1.
		

Crossrefs

Programs

  • Maple
    0, op(subs(0=9, ListTools:-PartialSums(select(isprime, [2,seq(i,i=3..1000,2)])) mod 9)); # Robert Israel, Mar 30 2017
  • Mathematica
    With[{nn = 78}, {0}~Join~Table[NestWhile[Total@ IntegerDigits@ # &, #, # >= 10 &] &@ Total@ Take[#, n], {n, nn}] &@ Array[Prime, nn]] (* Michael De Vlieger, Mar 15 2017 *)
  • PARI
    {
    p=0;print1(p", ");
    forprime(n=2,1000,
             p+=n;
             while(p>9,p=sumdigits(p))
             ;print1(p", ")
            )
    }
    
  • Python
    from sympy import primerange
    from itertools import accumulate
    prime_sum = [0] + list(accumulate(primerange(2, 1000)))
    def dig_root(n): return 1+(n-1)%9
    def a(n):
        return 0 if n<1 else dig_root(prime_sum[n])
    print([a(n) for n in range(101)]) # Indranil Ghosh, Mar 30 2017

Formula

a(n) = ((A007504(n) - 1) mod 9) + 1.
a(n) = ((A051351(n) - 1) mod 9) + 1.
a(n) = A010888(A007504(n)). - Michel Marcus, Mar 26 2017

Extensions

Corrected by Robert Israel, Mar 30 2017