cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A371846 The number of digits in max(a,b,c), where a, b, and c are the smallest positive integer solutions to a/(b+c) + b/(a+c) + c/(a+b) = A283564(n).

Original entry on oeis.org

81, 134, 190, 2707, 1876, 414, 10323, 33644, 81853, 14836, 1584369, 886344, 198771, 418086, 244860, 9188, 215532, 23662, 85465, 252817, 625533, 935970, 112519, 196670, 8572242, 3607937, 26942, 259164, 12046628, 15097279, 1265063, 398605460, 2828781, 20770896, 5442988, 11323026, 726373, 71225279
Offset: 1

Views

Author

Ryan Tang, Apr 09 2024

Keywords

Examples

			For n=1, a/(b+c) + b/(a+c) + c/(a+b) = 4, and the value of a, b, and c are 154476802108746166441951315019919837485664325669565431700026634898253202035277999, 36875131794129999827197811565225474825492979968971970996283137471637224634055579, and 4373612677928697257861252602371390152816537558161613618621437993378423467772036, and the maximum value has 81 digits.
		

A369896 Positive integers k such that k = a/(b+c) + b/(a+c) + c/(a+b) for some positive integers a, b and c.

Original entry on oeis.org

4, 6, 10, 12, 14, 16, 18, 24, 28, 32, 34, 38, 42, 46, 48, 58, 60, 66, 76, 82, 92, 94, 98, 102, 112, 114, 116, 126, 130, 132, 136, 144, 146, 152, 156, 158, 160, 162, 166, 178, 182, 184, 186, 196, 198, 200, 206, 214, 218, 228, 232, 244, 258, 266, 268, 270, 276, 282, 300, 304, 310, 312, 314
Offset: 1

Views

Author

Robin Visser, Feb 04 2024

Keywords

Comments

Bremner and Macleod showed that a positive integer k is in this sequence if and only if the elliptic curve E/Q : y^2 = x^3 + (4*k^2 + 12*k - 3)*x^2 + 32*(k + 3)*x has a generator on the bounded real component of E(R).

Examples

			There are no positive integer solutions to a/(b+c) + b/(a+c) + c/(a+b) = k for k = 1, 2, or 3. The smallest positive integer solution to a/(b+c) + b/(a+c) + c/(a+b) = 4 is (a, b, c) = (4373612677928697257861252602371390152816537558161613618621437993378423467772036, 36875131794129999827197811565225474825492979968971970996283137471637224634055579, 154476802108746166441951315019919837485664325669565431700026634898253202035277999).
		

Crossrefs

Cf. A283564 (Rank 1).

Programs

  • Magma
    is_A369896 := function(k)
        E := EllipticCurve([0, 4*k^2 + 12*k - 3, 0, 32*(k+3), 0]);
        return (Min([g[1] : g in Generators(E)]) lt 0);
    end function;
    [k : k in [4..200] | is_A369896(k)];
    
  • Sage
    def is_A369896(k):
        E = EllipticCurve([0, 4*k^2 + 12*k - 3, 0, 32*(k+3), 0])
        return ((E.rank() > 0) and (min([g.xy()[0] for g in E.gens()]) < 0))
    print([k for k in range(1, 70) if is_A369896(k)])

A366547 Triples of positive integers (a,b,c) with a<=b<=c such that a/(b+c) + b/(c+a) + c/(a+b) = 4.

Original entry on oeis.org

4373612677928697257861252602371390152816537558161613618621437993378423467772036, 36875131794129999827197811565225474825492979968971970996283137471637224634055579, 154476802108746166441951315019919837485664325669565431700026634898253202035277999
Offset: 1

Views

Author

Chai Wah Wu, Oct 12 2023

Keywords

Comments

Solution of a meme/puzzle that has been circulating on the web. The first 3 terms form the smallest solution.

Crossrefs

Showing 1-3 of 3 results.