A283597 Numbers n such that both 6n+1 and 6n+7 are semiprimes.
8, 14, 19, 41, 42, 43, 48, 49, 59, 74, 84, 85, 88, 92, 93, 97, 108, 113, 116, 132, 139, 144, 148, 149, 157, 158, 159, 162, 163, 189, 190, 193, 198, 209, 210, 211, 222, 223, 224, 225, 226, 227, 231, 234, 235, 250, 251, 259, 264, 272, 280, 285, 306, 307, 315, 316, 317, 318, 319, 320, 323, 326, 327, 340, 345, 349, 358, 361, 368, 376, 386, 387, 388
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= n -> numtheory:-bigomega(6*n+1) = 2 and numtheory:-bigomega(6*n+7) = 2: select(filter, [$1..1000]); # Robert Israel, Dec 23 2024
-
Mathematica
po[x_]=PrimeOmega[x]; Select[Range[500], po[6# + 1] == po[6# + 7] == 2 &]
-
PARI
for(n=1, 388, if(bigomega(6*n + 1) == 2 && bigomega(6*n + 7) == 2, print1(n,", "))) \\ Indranil Ghosh, Mar 15 2017
Comments