cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283613 T(n,k) = number of linear arrays of n 1's, n -1's, and k 0's such that no two adjacent elements are equal.

Original entry on oeis.org

1, 1, 2, 6, 6, 2, 2, 12, 30, 38, 24, 6, 2, 18, 74, 174, 248, 212, 100, 20, 2, 24, 138, 480, 1092, 1668, 1700, 1110, 420, 70, 2, 30, 222, 1026, 3228, 7188, 11492, 13140, 10500, 5572, 1764, 252, 2, 36, 326, 1882, 7580, 22274, 48852, 80672, 100044, 91840, 60564, 27132, 7392, 924, 2, 42, 450, 3118, 15324, 56040, 156664, 339720, 574716, 757148, 769356, 591444, 332640, 129096, 30888, 3432, 2, 48, 594, 4804, 27888, 122136, 415576, 1118268, 2403588, 4143116, 5719788, 6281856, 5416488, 3586968, 1760616, 603174, 128700, 12870
Offset: 0

Views

Author

Stefan Hollos, Mar 11 2017

Keywords

Examples

			The table starts with columns k=0...11 and rows n=0...5:
  | 0   1   2    3    4    5     6     7     8    9   10  11
-----------------------------------------------------------
0 | 1   1
1 | 2   6   6    2
2 | 2  12  30   38   24    6
3 | 2  18  74  174  248  212   100    20
4 | 2  24 138  480 1092 1668  1700  1110   420   70
5 | 2  30 222 1026 3228 7188 11492 13140 10500 5572 1764 252
For n=2, k=4 the 24 arrays are:
[-1,0,-1,0,1,0,1,0]  [-1,0,1,0,-1,0,1,0]  [-1,0,1,0,1,0,-1,0]  [1,0,-1,0,-1,0,1,0]
[1,0,-1,0,1,0,-1,0]  [1,0,1,0,-1,0,-1,0]  [0,-1,1,0,-1,0,1,0]  [0,-1,1,0,1,0,-1,0]
[0,-1,0,-1,1,0,1,0]  [0,-1,0,-1,0,1,0,1]  [0,-1,0,1,-1,0,1,0]  [0,-1,0,1,0,-1,1,0]
[0,-1,0,1,0,-1,0,1]  [0,-1,0,1,0,1,-1,0]  [0,-1,0,1,0,1,0,-1]  [0,1,-1,0,-1,0,1,0]
[0,1,-1,0,1,0,-1,0]  [0,1,0,-1,1,0,-1,0]  [0,1,0,-1,0,-1,1,0]  [0,1,0,-1,0,-1,0,1]
[0,1,0,-1,0,1,-1,0]  [0,1,0,-1,0,1,0,-1]  [0,1,0,1,-1,0,-1,0]  [0,1,0,1,0,-1,0,-1]
		

Crossrefs

Programs

  • Mathematica
    nmax=8; Flatten[CoefficientList[Series[CoefficientList[Series[((x + 1)^2*Sqrt[(1 - y)/(1 - (2x + 1)^2*y)] - x - 1)/x, {y, 0, nmax}], y], {x, 0, 2nmax + 1}], x]] (* Indranil Ghosh, Mar 22 2017 *)

Formula

G.f.:((x+1)^2*sqrt((1-y)/(1-(2*x+1)^2*y))-x-1)/x.
T(n,0) G.f.: (1+y)/(1-y).
T(n,1) G.f.: (y^2 + 4*y + 1)/(1-y)^2.
T(n,2) G.f.: 2*y*(y^2 + 6*y + 3)/(1-y)^3.
T(n,3) G.f.: 2*y*(2*y^3 + 17*y^2 + 15*y + 1)/(1-y)^4.
T(n,4) G.f.: 4*y^2*(2*y^3 + 23*y^2 + 32*y + 6)/(1-y)^5.
T(n,5) G.f.: 2*y^2*(8*y^4 + 120*y^3 + 243*y^2 + 88*y + 3)/(1-y)^6.
T(n,2*n+1) = binomial(2*n,n).
T(n,2*n) = (n+2)*binomial(2*n,n).
T(n,n) = A110706(n) n > 0.
Sum_{2*n+k = m} T(n,k) = A199697(m).