A283657 Numbers m such that 2^m + 1 has at most 2 distinct prime factors.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 19, 20, 23, 28, 31, 32, 40, 43, 61, 64, 79, 92, 101, 104, 127, 128, 148, 167, 191, 199, 256, 313, 347, 356, 596, 692, 701, 1004, 1228, 1268, 1709, 2617, 3539, 3824, 5807, 10501, 10691, 11279, 12391, 14479
Offset: 1
Keywords
Examples
0 is a term as 2^0 + 1 = 2 is a prime. 10 is a term as 2^10 + 1 = 5^2 * 41. 14 is not a term as 2^14 + 1 = 5 * 29 * 113.
Links
- Giuseppe Coppoletta, Table of n, a(n) for n = 1..65
- Jack Brennen, Primes of the form (4^p+1)/5^t, Seqfan (Mar 15 2017).
- C. Caldwell's The Top Twenty Wagstaff primes.
- Mersennewiki, Factorizations Of Cunningham Numbers C+(2,n) (tables).
- Samuel S. Wagstaff, The Cunningham Project.
- Eric Weisstein's World of Mathematics, Catalan's Conjecture.
- Eric Weisstein's World of Mathematics, Zsigmondy Theorem.
Crossrefs
Programs
-
Maple
# this uses A002587[i] for i<=500, e.g., from the b-file for that sequence count:= 0: for i from 0 to 500 do m:= 0; r:= (2^i+1); if i::odd then m:= 1; r:= r/3^padic:-ordp(r,3); elif i > 2 then q:= max(numtheory:-factorset(i)); if q > 2 then m:= 1; r:= r/B[i/q]^padic:-ordp(r,A002587[i/q]); fi fi; if r mod B[i] = 0 then m:= m+1; j:= padic:-ordp(r, A002587[i]); r:= r/B[i]^j; fi; mmax:= m; if isprime(r) then m:= m+1; mmax:= m elif r > 1 then mmax:= m+2 fi; if mmax <= 2 or (m <= 1 and m + nops(numtheory:-factorset(r)) <= 2) then count:= count+1; A[count]:= i; fi od: seq(A[i],i=1..count); # Robert Israel, Mar 13 2017
-
Mathematica
Select[Range[0, 313], PrimeNu[2^# + 1]<3 &] (* Indranil Ghosh, Mar 13 2017 *)
-
PARI
for(n=0, 313, if(omega(2^n + 1)<3, print1(n,", "))) \\ Indranil Ghosh, Mar 13 2017
Extensions
a(16)-a(38) from Peter J. C. Moses, Mar 13 2017
a(39)-a(40) from Robert Israel, Mar 13 2017
a(41)-a(65) from Giuseppe Coppoletta, May 08 2017
Comments