A283715 a(n) is the number of Carmichael numbers whose largest prime factor is prime(n).
0, 0, 0, 0, 0, 0, 2, 1, 0, 1, 2, 2, 2, 0, 0, 0, 0, 6, 3, 1, 9, 2, 0, 3, 9, 7, 3, 1, 16, 20, 42, 19, 12, 15, 3, 60, 54, 57, 2, 8, 2, 277, 20, 170, 75, 259, 775, 57, 11, 110
Offset: 1
Examples
a(28) = 1 because prime(28) = 107 and there is only one Carmichael number whose largest prime factor is 107, namely 413631505 = 5 * 7 * 17 * 73 * 89 * 107.
Links
Programs
-
Mathematica
a[n_] := a[n] = If[n < 6, 0, Block[{t, p = Prime@ n}, Length@ Select[ Subsets[ Prime@ Range[2, n-1], {2, n-2}], (t = Times @@ #; Mod[t-1, p-1] == 0 && And @@ IntegerQ /@ ((p t - 1)/ (#-1))) &]]]; Array[a, 22]
-
Python
from math import prod from itertools import combinations from sympy import prime, primerange def A283715(n): plist, c = list(primerange(3,p:=prime(n))), 0 for l in range(2,len(plist)+1): for q in combinations(plist,l): k = prod(q)*p-1 if not (k%(p-1) or any(k%(r-1) for r in q)): c+=1 return c # Chai Wah Wu, Sep 25 2024
Extensions
a(42)-a(50) from Ondrej Kutal, Sep 29 2024
Comments