A283320 Composite semisimple numbers.
4, 9, 10, 12, 18, 24, 42, 60, 84, 90, 120, 150, 180, 330, 390, 420, 630, 840, 1050, 1260, 1470, 1680, 1890, 2100, 2730, 3570, 3990, 4620, 5460, 6930, 8190, 9240, 10920, 11550, 13650, 13860, 16170, 18480, 20790, 23100, 25410, 27720, 39270, 43890, 53130
Offset: 1
Keywords
Links
- M. F. Hasler, Table of n, a(n) for n = 1..500 (Terms up to 3.5*10^18.)
- J. Wang, X. Wang, On the set of reduced phi-partitions of a positive integer, Fib. Quart. 44 (2) (2006) 98-102.
Programs
-
PARI
is_A283320(n)={bittest(n,0)&&return(n==9);(2>n\=2)&&return;my(Q,m);forprime(p=3,,n
p && for(k=1, #Q-m=#select(q->q<=p, Q), forvec(q=vector(k, j, [m+1, #Q]), prod(i=1, k, 1-p/Q[q[i]], n)
-
PARI
list_A283320(n,L=4,N=1,s=1,a=List())={forprime(p=2,,L*=nextprime(p+1);until(N>=L,until(is_A283320(N+=s),);listput(a,N);n--||return(Vec(a)));s*=p)} \\ Assumes the gap is a multiple of (p-1)# for N >= (L/2)*p#: With the default L=4, the step is increased to s = 2, 6, 30,... for N >= 12, 60, 420,... For n > 418 one must increase L, since a(419) = 2*A002110(15)/prime(13) ~ 2.3*A002110(14) and a(425) = 3*A002110(15)/prime(13) ~ 3.4*A002110(14) are not multiples of A002110(13). No other such term > 2*p# not a multiple of (p-1)# occurs below 2*67#/59 ~ 2.7e23, and L=8 is sufficient up to 4*73#/71 = 1.8e29. - M. F. Hasler, Mar 16 2017
Extensions
a(19)-a(32) from Alois P. Heinz, Mar 15 2017
a(33) and beyond from M. F. Hasler, Mar 17 2017
Comments