cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283762 Expansion of (x + Sum_{k>=1} x^prime(k))^3.

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 7, 9, 9, 13, 12, 15, 9, 15, 12, 22, 15, 24, 12, 27, 18, 34, 18, 36, 15, 42, 24, 45, 15, 42, 12, 51, 24, 52, 18, 60, 21, 66, 24, 58, 15, 69, 18, 75, 30, 75, 24, 87, 21, 93, 36, 91, 24, 99, 18, 108, 36, 97, 18, 108, 21, 126, 42, 111, 21, 135, 30, 141, 36, 112, 18, 150, 30, 153, 42, 138, 33, 177, 30, 171, 42
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 16 2017

Keywords

Comments

Number of ways to write n as an ordered sum of 3 noncomposite numbers (1 together with the primes) (A008578).
a(2k+1) > 0 for all k > 0 (from the ternary Goldbach's conjecture, proved by H. A. Helfgott).

Examples

			a(6) = 7 because we have [3, 2, 1], [3, 1, 2], [2, 3, 1], [2, 2, 2], [2, 1, 3], [1, 3, 2] and [1, 2, 3].
		

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[(x + Sum[x^Prime[k], {k, 1, nmax}])^3, {x, 0, nmax}], x]
  • PARI
    concat([0, 0, 0], Vec((x + sum(k=1, 80, x^prime(k)))^3 + O(x^81))) \\ Indranil Ghosh, Mar 16 2017

Formula

G.f.: (x + Sum_{k>=1} x^prime(k))^3.