cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A283561 Numbers k such that the concatenation of the first k nonsquares gives a prime.

Original entry on oeis.org

1, 2, 5, 550, 832, 10431
Offset: 1

Views

Author

XU Pingya, Mar 10 2017

Keywords

Comments

Indices n for which A283560(n) is prime.
A283560(1) = 2, A283560(2) = 23, A283560(5) = 23567, A283560(550) = 23567810...570571572573 is 1554-digits prime, A283560(832) = 23567810...858859860861 is 2400-digits prime.
Next term, if there is, will be more than 6100.
a(7) > 30000. - Michael S. Branicky, Apr 30 2025

Crossrefs

Programs

  • Mathematica
    cns[n_]:=FromDigits[Flatten[IntegerDigits[Table[k+Floor[1/2+Sqrt[k]],{k,1,n}]]]]
    Select[Table[cns[n],{n,6100}],PrimeQ]
  • PARI
    is(n)=my(s=""); for(k=1,n, s=Str(s, (sqrtint(4*k)+1)\2 + k)); ispseudoprime(eval(s)) \\ Charles R Greathouse IV, Mar 10 2017

Extensions

a(6) from Michael S. Branicky, Apr 28 2025

A283801 Concatenation of the first n odd composite numbers (A071904).

Original entry on oeis.org

9, 915, 91521, 9152125, 915212527, 91521252733, 9152125273335, 915212527333539, 91521252733353945, 9152125273335394549, 915212527333539454951, 91521252733353945495155, 9152125273335394549515557, 915212527333539454951555763, 91521252733353945495155576365
Offset: 1

Views

Author

XU Pingya, Mar 17 2017

Keywords

Comments

There are 3 primes in the first 5028 terms of this sequence, see A283802.

Crossrefs

Programs

  • Mathematica
    bb[1]=9;bb[n_]:=bb[n]=Which[PrimeQ[bb[n-1]+2]==False,bb[n-1]+2,PrimeQ[bb[n-1]+4]==False,bb[n-1]+4,True,bb[n-1]+6];coc[n_]:=FromDigits[Flatten[IntegerDigits[Table[bb[k],{k,1,n}]]]];Table[coc[n],14]
    f[n_] := Block[{oc = cc = 0, k = 2}, While[oc <= n, If[ OddQ@ k && !PrimeQ@ k, cc = cc*10^IntegerLength[k] +k; oc++]; k++]; cc]; Array[f, 14] (* Robert G. Wilson v, Mar 17 2017 *)
Showing 1-2 of 2 results.