A285190 Records in A283832.
1, 2, 3, 4, 10, 17, 20, 44, 52, 54, 78, 100, 102, 113, 135, 139, 140, 162, 180, 195, 259, 270, 288, 334, 336
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
The first terms, alongside their required and forbidden prime factors are: n a(n) Required Forbidden -- ---- -------- --------- 1 1 none none 2 2 none none 3 4 2 none 4 3 none 2 5 6 3 none 6 8 2 3 7 5 none 2 8 10 5 none 9 12 2 5 10 9 3 2 11 7 none 3 12 14 7 none 13 16 2 7 14 11 none 2 15 22 11 none 16 18 2 11 17 15 3 2 18 20 5 3 19 24 2 5 20 21 3 2 21 28 7 3 22 26 2 7 23 13 13 2 24 17 none 13 25 34 17 none 26 30 2 17 27 45 3, 5 2 28 19 none 3, 5 29 38 19 none 30 32 2 19 31 23 none 2 32 46 23 none 33 36 2 23 34 27 3 2 35 25 none 3 36 35 5 none 37 42 7 5 38 48 2, 3 7 39 29 none 2, 3 40 58 29 none 41 40 2 29 42 55 5 2
N:= 1000: # to get all terms until the first term > N A[1]:= 1: A[2]:= 2: G:= {}: Avail:= [$3..N]: found:= true: lastn:= 2: for n from 3 while found and nops(Avail)>0 do found:= false; H:= G; G:= numtheory:-factorset(A[n-1]); r:= convert(G minus H,`*`); s:= convert(G intersect H, `*`); for j from 1 to nops(Avail) do if Avail[j] mod r = 0 and igcd(Avail[j],s) = 1 then found:= true; A[n]:= Avail[j]; Avail:= subsop(j=NULL,Avail); lastn:= n; break fi od; od: seq(A[i],i=1..lastn); # Robert Israel, Mar 22 2017
terms = 100; rad[n_] := Times @@ FactorInteger[n][[All, 1]]; A280864 = Reap[present = 0; p = 1; pp = 1; Do[forbidden = GCD[p, pp]; mandatory = p/forbidden; a = mandatory; While[BitGet[present, a] > 0 || GCD[forbidden, a] > 1, a += mandatory]; Sow[a]; present += 2^a; pp = p; p = rad[a], terms]][[2, 1]] (* Jean-François Alcover, Nov 23 2017, translated from Rémy Sigrist's PARI program *)
Some solutions for small n: n a(n) Solution S -- ---- -------------------------------------------------------------- 1 1 1 4 2 2,4 6 3 2,6,3 10 4 3,6,10,5 15 7 3,6,10,15,12,14,7 21 10 3,6,10,15,12,14,21,18,20,5 33 13 3,6,10,15,12,14,21,18,22,33,24,20,5 35 16 3,6,10,15,12,14,21,18,20,35,28,22,33,24,26,13 39 19 3,6,10,15,12,14,21,18,20,35,28,22,33,24,26,39,36,34,17 45 22 5,10,6,15,20,12,21,14,18,33,22,24,39,26,36,45,40,28,35,30,42,7
Comments