A283836 Number of length-n binary vectors beginning with 0, ending with 1, and avoiding 6 consecutive 0's and 6 consecutive 1's.
1, 0, 1, 2, 4, 8, 16, 30, 60, 118, 232, 456, 897, 1762, 3465, 6812, 13392, 26328, 51760, 101756, 200048, 393284, 773176, 1520024, 2988289, 5874820, 11549593, 22705902, 44638628, 87757232, 172526176, 339177530, 666805468, 1310905034, 2577171440, 5066585648
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Stefano Bilotta, Variable-length Non-overlapping Codes, arXiv preprint arXiv:1605.03785 [cs.IT], 2016 [See Table 2].
Programs
-
Mathematica
CoefficientList[Series[-1/((x + 1)*(x^2 + x + 1)*(x^2 - x + 1)*(x^5 + x^4 + x^3 + x^2 + x - 1)), {x, 0, 50}], x] (* Indranil Ghosh, Mar 26 2017 *)
-
PARI
Vec(-1/((x + 1)*(x^2 + x + 1)*(x^2 - x + 1)*(x^5 + x^4 + x^3 + x^2 + x - 1)) + O(x^50)) \\ Indranil Ghosh, Mar 26 2017
Formula
G.f.: -1/((x+1)*(x^2+x+1)*(x^2-x+1)*(x^5+x^4+x^3+x^2+x-1)). - Alois P. Heinz, Mar 25 2017
Extensions
More terms from Alois P. Heinz, Mar 25 2017