cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283846 Number of n-gonal inositol homologs with 2 kinds of achiral proligands.

Original entry on oeis.org

2, 6, 10, 31, 68, 226, 650, 2259, 7542, 27036, 96350, 352786, 1294652, 4806366, 17912120, 67160083, 252710672, 954641186, 3617076710, 13744708060, 52358745532, 199914446106, 764881848410, 2932043941394, 11259015845684, 43303894193076, 166800053312630
Offset: 1

Views

Author

N. J. A. Sloane, Apr 01 2017

Keywords

Comments

Counts A032275 up to paired color permutation (equivalent to full color permutation on the 2-tuples of two subcolors, e.g., convert quaternary beads 0 1 2 3 to dibit beads 00 01 10 11). - Travis Scott, Jan 09 2023

Crossrefs

The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.

Programs

  • Maple
    f:=  proc(m) uses numtheory;
      if m::even then 1/(4*m)*add(phi(d)*4^(m/d)*`if`(d::even,2,1), d = divisors(m))
    + 3*2^(m-2)
      else
    1/(4*m)*add(phi(d)*4^(m/d),d=divisors(m))+2^(m-1)
      fi
    end proc:
    map(f, [$1..100]); # Robert Israel, Aug 21 2018
  • Mathematica
    f[m_] := If[EvenQ[m], 1/(4m)*Sum[EulerPhi[d]*4^(m/d)*If[EvenQ[d], 2, 1], {d, Divisors[m]}]+ 3*2^(m-2), 1/(4m)*Sum[EulerPhi[d]*4^(m/d), {d, Divisors[m]}] + 2^(m-1)];
    f /@ Range[1, 25] (* Jean-François Alcover, Feb 26 2019, after Robert Israel *)

Formula

From Robert Israel, Aug 21 2018 after Fujita (2017), Eq. (99)(set n=2, m=n): (Start)
if n is even, a(n) = (4*n)^(-1)*(Sum_{d|n} phi(d)*4^(n/d) + Sum_{d|n, d even} phi(d)*4^(n/d)) + 3*2^(n-2).
if n is odd, a(n) = 2^(n-1) + (4*n)^(-1)*Sum_{d|n} phi(d)*4^(n/d). (End)

Extensions

a(1)-a(2) prepended by Travis Scott, Jan 09 2023