A283846 Number of n-gonal inositol homologs with 2 kinds of achiral proligands.
2, 6, 10, 31, 68, 226, 650, 2259, 7542, 27036, 96350, 352786, 1294652, 4806366, 17912120, 67160083, 252710672, 954641186, 3617076710, 13744708060, 52358745532, 199914446106, 764881848410, 2932043941394, 11259015845684, 43303894193076, 166800053312630
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..1665
- Shinsaku Fujita, alpha-beta Itemized Enumeration of Inositol Derivatives and m-Gonal Homologs by Extending Fujita's Proligand Method, Bull. Chem. Soc. Jpn. 2017, 90, 343-366; doi:10.1246/bcsj.20160369. See Table 8.
- Yi Hu, Numerical Transfer Matrix Method of Next-nearest-neighbor Ising Models, Master's Thesis, Duke Univ. (2021).
- Yi Hu and Patrick Charbonneau, Numerical transfer matrix study of frustrated next-nearest-neighbor Ising models on square lattices, arXiv:2106.08442 [cond-mat.stat-mech], 2021.
Crossrefs
Programs
-
Maple
f:= proc(m) uses numtheory; if m::even then 1/(4*m)*add(phi(d)*4^(m/d)*`if`(d::even,2,1), d = divisors(m)) + 3*2^(m-2) else 1/(4*m)*add(phi(d)*4^(m/d),d=divisors(m))+2^(m-1) fi end proc: map(f, [$1..100]); # Robert Israel, Aug 21 2018
-
Mathematica
f[m_] := If[EvenQ[m], 1/(4m)*Sum[EulerPhi[d]*4^(m/d)*If[EvenQ[d], 2, 1], {d, Divisors[m]}]+ 3*2^(m-2), 1/(4m)*Sum[EulerPhi[d]*4^(m/d), {d, Divisors[m]}] + 2^(m-1)]; f /@ Range[1, 25] (* Jean-François Alcover, Feb 26 2019, after Robert Israel *)
Formula
From Robert Israel, Aug 21 2018 after Fujita (2017), Eq. (99)(set n=2, m=n): (Start)
if n is even, a(n) = (4*n)^(-1)*(Sum_{d|n} phi(d)*4^(n/d) + Sum_{d|n, d even} phi(d)*4^(n/d)) + 3*2^(n-2).
if n is odd, a(n) = 2^(n-1) + (4*n)^(-1)*Sum_{d|n} phi(d)*4^(n/d). (End)
Extensions
a(1)-a(2) prepended by Travis Scott, Jan 09 2023
Comments