cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A000011 Number of n-bead necklaces (turning over is allowed) where complements are equivalent.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 8, 9, 18, 23, 44, 63, 122, 190, 362, 612, 1162, 2056, 3914, 7155, 13648, 25482, 48734, 92205, 176906, 337594, 649532, 1246863, 2405236, 4636390, 8964800, 17334801, 33588234, 65108062, 126390032, 245492244, 477353376, 928772650, 1808676326, 3524337980
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of minimal fibrations of a bidirectional n-cycle over the 2-bouquet up to precompositions with automorphisms of the n-cycle and postcomposition with automorphisms of the 2-bouquet. (Boldi et al.) - Sebastiano Vigna, Jan 08 2018
For n >= 3, also the number of distinct planar embeddings of the n-sunlet graph. - Eric W. Weisstein, May 21 2024

Examples

			From Jason Orendorff (jason.orendorff(AT)gmail.com), Jan 09 2009: (Start)
The binary bracelets for small n are:
  n: bracelets
  0: (the empty bracelet)
  1: 0
  2: 00, 01
  3: 000, 001
  4: 0000, 0001, 0011, 0101
  5: 00000, 00001, 00011, 00101
  6: 000000, 000001, 000011, 000101, 000111, 001001, 001011, 010101
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 2 of A320748.
Cf. A000013. Bisections give A000117 and A092668.
The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.

Programs

  • Maple
    with(numtheory): A000011 := proc(n) local s,d; if n = 0 then RETURN(1) else s := 2^(floor(n/2)); for d in divisors(n) do s := s+(phi(2*d)*2^(n/d))/(2*n); od; RETURN(s/2); fi; end;
  • Mathematica
    a[n_] := Fold[ #1 + EulerPhi[2#2]2^(n/#2)/(2n) &, 2^Floor[n/2], Divisors[n]]/2
    a[ n_] := If[ n < 1, Boole[n == 0], 2^Quotient[n, 2] / 2 + DivisorSum[ n, EulerPhi[2 #] 2^(n/#) &] / (4 n)]; (* Michael Somos, Dec 19 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, 2^(n\2) / 2 + sumdiv(n, k, eulerphi(2*k) * 2^(n/k)) / (4*n))}; /* Michael Somos, Jun 03 2002 */

Formula

a(n) = (A000013(n) + 2^floor(n/2))/2.

Extensions

Better description from Christian G. Bower
More terms from David W. Wilson, Jan 13 2000

A053656 Number of cyclic graphs with oriented edges on n nodes (up to symmetry of dihedral group).

Original entry on oeis.org

1, 2, 2, 4, 4, 9, 10, 22, 30, 62, 94, 192, 316, 623, 1096, 2122, 3856, 7429, 13798, 26500, 49940, 95885, 182362, 350650, 671092, 1292762, 2485534, 4797886, 9256396, 17904476, 34636834, 67126282, 130150588, 252679832, 490853416
Offset: 1

Views

Author

Jeb F. Willenbring (jwillenb(AT)ucsd.edu), Feb 14 2000

Keywords

Comments

Also number of bracelets (or necklaces) with n red or blue beads such that the beads switch colors when bracelet is turned over.
a(n) is also the number of frieze patterns generated by filling a 1 X n block with n copies of an asymmetric motif (where the copies are chosen from original motif or a 180-degree rotated copy) and then repeating the block by translation to produce an infinite frieze pattern. (Pisanski et al.)
a(n) is also the number of minimal fibrations of a bidirectional n-cycle over the 2-bouquet up to precompositions with automorphisms of the n-cycle. (Boldi et al.) - Sebastiano Vigna, Jan 08 2018

Examples

			2 at n=3 because there are two such cycles. On (o -> o -> o ->) and (o -> o <- o ->).
		

References

  • Jeb F. Willenbring, A stability result for a Hilbert series of O_n(C) invariants.

Crossrefs

The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.

Programs

  • Maple
    v:=proc(n) local k, t1; t1:=0; for k in divisors(n) do t1 := t1+phi(k)*2^(n/k); od: t1; end;
    h:=n-> if n mod 2 = 0 then (n/2)*2^(n/2); else 0; fi;
    A053656:=n->(v(n)+h(n))/(2*n); # N. J. A. Sloane, Nov 11 2006
  • Mathematica
    a[n_] := Total[ EulerPhi[#]*2^(n/#)& /@ Divisors[n]]/(2n) + 2^(n/2-2)(1-Mod[n, 2]); Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Nov 21 2011 *)
  • PARI
    a(n)={(sumdiv(n, d, eulerphi(d)*2^(n/d))/n + if(n%2==0, 2^(n/2-1)))/2} \\ Andrew Howroyd, Jun 16 2021

Formula

G.f.: x/(1-x) + x^2/(2*(1-2*x^2)) + Sum_{n >= 1} (x^(2*n)/(2*n)) * Sum_{ d divides n } phi(d)/(1-x^d)^(2*n/d), or x^2/(2*(1-2*x^2)) - Sum_{n >= 1} phi(n)*log(1-2*x^n)/(2*n). [corrected and extended by Andrey Zabolotskiy, Oct 17 2017]
a(n) = A000031(n)/2 + (if n even) 2^(n/2-2).

Extensions

More terms and additional comments from Christian G. Bower, Dec 13 2001

A123045 Number of frieze patterns of length n under a certain group (see Pisanski et al. for precise definition).

Original entry on oeis.org

0, 2, 6, 12, 39, 104, 366, 1172, 4179, 14572, 52740, 190652, 700274, 2581112, 9591666, 35791472, 134236179, 505290272, 1908947406, 7233629132, 27488079132, 104715393912, 399823554006, 1529755308212, 5864066561554, 22517998136936, 86607703209516
Offset: 0

Views

Author

N. J. A. Sloane, Nov 11 2006

Keywords

Crossrefs

The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.

Programs

  • Maple
    with(numtheory):
    V:=proc(n) local k, t1; t1:=0; for k in divisors(n) do t1 := t1+phi(k)*4^(n/k); od: t1; end; # A054611
    H:=n-> if n mod 2 = 0 then (n/2)*4^(n/2); else 0; fi; # this is A018215 interleaved with 0's
    A123045:=n-> `if`(n=0,0, (V(n)+H(n))/(2*n));
  • Mathematica
    V[n_] := Module[{t1 = 0}, Do[t1 = t1 + EulerPhi[k] 4^(n/k), {k, Divisors[n]}]; t1];
    H[n_] := If[Mod[n, 2] == 0, (n/2) 4^(n/2), 0];
    a[n_] := If[n == 0, 0, (V[n] + H[n])/(2n)];
    a /@ Range[0, 26] (* Jean-François Alcover, Mar 20 2020, from Maple *)

Formula

See Maple program.

A256216 a(n) = A053656(n) - A000011(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 4, 7, 18, 31, 70, 126, 261, 484, 960, 1800, 3515, 6643, 12852, 24458, 47151, 90157, 173744, 333498, 643230, 1238671, 2392650, 4620006, 8939676, 17302033, 33538048, 65042526, 126289800, 245361172
Offset: 1

Views

Author

N. J. A. Sloane, Mar 26 2015

Keywords

Comments

Counts contiguously substituted cycloalkane polyols (CSCPs).
From Ed Wynn and Andrew Howroyd, May 22 2021: (Start)
Consider a bracelet of n beads, each colored blue on one side and red on the other. Turning the bracelet over has the effect of simultaneously swapping the colors and reversing the order of the beads. For example, rrbbrb when turned over becomes rbrrbb. The total number of such bracelets is counted by A053656(n).
Swapping the colors is equivalent to reversing the order of the beads. For example, rrbbrb becomes bbrrbr which when turned over is brbbrr. A bracelet may or may not be the same as its reversal (or complement). The case of equality is counted by A256217(n) and the remainder can be divided into "chiral" pairs which are the reverse of each other and counted by this sequence. a(n) is then the number of pairs of two-colored n-bead bracelets that are equal under reversal but unequal up to rotation and turning over.
In chemical terms, these pairs are called "enantiomeric pairs". The example of rrbbrb corresponds to a pair of "chiral" chemical molecules: L-chiro-inositol and R-chiro-inositol.
a(n) is also half the number of nonisomorphic orientations of the n-cycle graph which are not self-converse. Again the self-converse orientations are counted by A256217(n) and the total by A053656(n).
(End)

Examples

			From _Ed Wynn_ and _Andrew Howroyd_, May 22 2021: (Start)
The a(6) = 1 pair of bracelets are rrbbrb and its complement bbrrbr. These two are not the same under simultaneous reversal and swapping the colors (rrbbrb is equivalent to rbrrbb which is not the same as bbrrbr by rotation).
Replacing r with ->- and b with -<- gives two distinct orientations of the cycle:
     ->-.->-.-<-.-<-.->-.-<-   :   ->-.-<-.->-.->-.-<-.-<-
    |                       |  :  |                       |
     -----------.-----------   :   -----------.-----------
These two might be written in shorthand as >><<>< and <<>><>.
The a(8) = 4 pairs of bracelets are rrrrbrbb, rrrbrrbb, rrrbrbbb, rrbrbrbb and their complements.
(End)
		

Crossrefs

The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.

Programs

Formula

a(n) = A053656(n) - A000011(n).
A053656(n) = 2*a(n) + A256217(n). - Andrew Howroyd and Ed Wynn, Jun 15 2021

A256217 a(n) = A000011(n) - A256216(n).

Original entry on oeis.org

1, 2, 2, 4, 4, 7, 8, 14, 16, 26, 32, 52, 64, 101, 128, 202, 256, 399, 512, 796, 1024, 1583, 2048, 3162, 4096, 6302, 8192, 12586, 16384, 25124, 32768, 50186, 65536, 100232, 131072, 200266, 262144, 400115, 524288, 799568, 1048576, 1597834, 2097152, 3193438, 4194304, 6382637, 8388608, 12757770, 16777216, 25501370
Offset: 1

Views

Author

N. J. A. Sloane, Mar 26 2015

Keywords

Comments

Counts contiguously substituted cycloalkane polyols (CSCPs).
Consider a bracelet of n beads, each colored blue on one side and red on the other -- each bead changes color when the bracelet is turned over. Reversal is then the same as swapping the colors. a(n) is the number of colorings that are invariant under reversal, up to rotation and turning over. - Ed Wynn, May 22 2021

Examples

			The a(7) = 8 bracelets are rrrrrrr, rrrrrrb, rrrrrbb, rrrrbbb, rrrrbrb, rrrbrrb, rrbbrrb, rrbrbrb. - _Ed Wynn_, May 22 2021
a(12) = A056503(12) + 1. The extra bracelet is rrrbrrbbbrbb. - _Andrew Howroyd_, Jun 25 2021
		

Crossrefs

The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.

Formula

a(n) = A056503(n) for odd n. - Andrew Howroyd, Jun 14 2021

A283847 Number of n-gonal inositol homologs with 2 kinds of achiral proligands.

Original entry on oeis.org

2, 8, 36, 140, 522, 1920, 7030, 25704, 94302, 347488, 1286460, 4785300, 17879352, 67076096, 252579600, 954306220, 3616552422, 13743371072, 52356648380, 199909107900, 764873459802, 2932022620160, 11258982291252, 43303809016440, 166799919094902, 643371241120928
Offset: 3

Views

Author

N. J. A. Sloane, Apr 01 2017

Keywords

Crossrefs

The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.

Programs

  • Maple
    f:= proc(n) uses numtheory;
      if n::even then (4*n)^(-1)*add(phi(d)*4^(n/d), d = select(type,divisors(n),odd)) - 2^(n-1)
      else (4*n)^(-1)*add(phi(d)*4^(n/d), d = divisors(n)) - 2^(n-1)
      fi
    end proc:
    map(f, [$3..50]); # Robert Israel, Aug 23 2018
  • Mathematica
    a[n_] := If[EvenQ[n], (4n)^(-1) Sum[EulerPhi[d] 4^(n/d), {d, Select[ Divisors[n], OddQ]}] - 2^(n-1), (4n)^(-1) Sum[EulerPhi[d] 4^(n/d), {d, Divisors[n]}] - 2^(n-1)];
    Table[a[n], {n, 3, 50}] (* Jean-François Alcover, Mar 23 2019, after Robert Israel *)

Formula

a(n) = (4*n)^(-1)*(Sum_{d|n, d odd} phi(d)*4^(n/d)) - 2^(n-1). - Robert Israel, Aug 23 2018 after Fujita (2017), Eq. (100) (set n=2, m=n)

A283848 Number of n-gonal inositol homologs with 2 kinds of achiral proligands.

Original entry on oeis.org

8, 23, 32, 86, 128, 339, 512, 1332, 2048, 5298, 8192, 21066, 32768, 83987, 131072, 334966, 524288, 1336988, 2097152, 5338206, 8388608, 21321234, 33554432, 85176636, 134217728, 340338398, 536870912, 1360073016, 2147483648, 5435820051, 8589934592, 21727481616, 34359738368, 86853790498, 137438953472
Offset: 3

Views

Author

N. J. A. Sloane, Apr 01 2017

Keywords

Crossrefs

The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.

Programs

  • Maple
    f:= proc(n) uses numtheory;
      if n::even then (2*n)^(-1)*add(phi(d)*4^(n/d),d=select(type,divisors(n),even))+5*2^(n-2)
      else 2^n
      fi
    end proc:
    map(f, [$1..40]); # Robert Israel, Aug 23 2018
  • Mathematica
    a[n_] := If[EvenQ[n], (2n)^(-1) Sum[EulerPhi[d] 4^(n/d), {d, Select[ Divisors[n], EvenQ]}] + 5*2^(n-2), 2^n];
    Table[a[n], {n, 3, 40}] (* Jean-François Alcover, Mar 23 2019, after Robert Israel *)
  • PARI
    a(n) = if (n%2, 2^n, (2*n)^(-1)*sumdiv(n, d, if (!(d%2), eulerphi(d)*4^(n/d))) + 5*2^(n-2)); \\ Michel Marcus, Mar 23 2019

Formula

If n is even, a(n) = (2*n)^(-1)*Sum_{d|n, d even} phi(d)*4^(n/d) + 5*2^(n-2). - Robert Israel, Aug 23 2018 after Fujita (2017), Eq. (101) (set n=2, m=n).
If n is odd, a(n) = 2^n. For the even bisection see A284711.

Extensions

Edited and more terms by Robert Israel, Aug 23 2018

A284711 Even bisection of A283848.

Original entry on oeis.org

23, 86, 339, 1332, 5298, 21066, 83987, 334966, 1336988, 5338206, 21321234, 85176636, 340338398, 1360073016, 5435820051, 21727481616, 86853790498, 347214198246, 1388133456348, 5549915835836, 22190143855898, 88725807876186, 354775752246802, 1418633882621748, 5672803378074548
Offset: 2

Views

Author

N. J. A. Sloane, Apr 01 2017

Keywords

Crossrefs

The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.
The even bisection of A283848 gives A000079.

Programs

  • Maple
    f:= proc(n) uses numtheory;
    (4*n)^(-1)*add(phi(d)*4^(2*n/d),d=select(type,divisors(2*n),even))+5*2^(2*n-2)
    end proc:
    map(f, [$2..40]);
  • PARI
    A(m,n) = if (m%2, 2^((m-1)/2)*n^((m+1)/2), sumdiv(m, d, ((d%2)==0)*(eulerphi(d)*2^(m/d)*n^(m/d)))/(2*m) + 2^(m/2-2)*n^(m/2)*(2*n+1));
    lista(nn) = for(n=2, nn, print1(T(2*n, 2), ", ")) \\ Michel Marcus, Apr 02 2017

Formula

a(n) = A283848(2*n)=(4*n)^(-1)*Sum_{d|2*n, d even} phi(d)*4^(2*n/d) + 5*2^(2*n-2). - Robert Israel, Aug 23 2018 after Fujita (2017), Eq. (101)

Extensions

More terms from Michel Marcus, Apr 02 2017
Edited by Robert Israel, Aug 23 2018
Showing 1-8 of 8 results.