cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A256216 a(n) = A053656(n) - A000011(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 4, 7, 18, 31, 70, 126, 261, 484, 960, 1800, 3515, 6643, 12852, 24458, 47151, 90157, 173744, 333498, 643230, 1238671, 2392650, 4620006, 8939676, 17302033, 33538048, 65042526, 126289800, 245361172
Offset: 1

Views

Author

N. J. A. Sloane, Mar 26 2015

Keywords

Comments

Counts contiguously substituted cycloalkane polyols (CSCPs).
From Ed Wynn and Andrew Howroyd, May 22 2021: (Start)
Consider a bracelet of n beads, each colored blue on one side and red on the other. Turning the bracelet over has the effect of simultaneously swapping the colors and reversing the order of the beads. For example, rrbbrb when turned over becomes rbrrbb. The total number of such bracelets is counted by A053656(n).
Swapping the colors is equivalent to reversing the order of the beads. For example, rrbbrb becomes bbrrbr which when turned over is brbbrr. A bracelet may or may not be the same as its reversal (or complement). The case of equality is counted by A256217(n) and the remainder can be divided into "chiral" pairs which are the reverse of each other and counted by this sequence. a(n) is then the number of pairs of two-colored n-bead bracelets that are equal under reversal but unequal up to rotation and turning over.
In chemical terms, these pairs are called "enantiomeric pairs". The example of rrbbrb corresponds to a pair of "chiral" chemical molecules: L-chiro-inositol and R-chiro-inositol.
a(n) is also half the number of nonisomorphic orientations of the n-cycle graph which are not self-converse. Again the self-converse orientations are counted by A256217(n) and the total by A053656(n).
(End)

Examples

			From _Ed Wynn_ and _Andrew Howroyd_, May 22 2021: (Start)
The a(6) = 1 pair of bracelets are rrbbrb and its complement bbrrbr. These two are not the same under simultaneous reversal and swapping the colors (rrbbrb is equivalent to rbrrbb which is not the same as bbrrbr by rotation).
Replacing r with ->- and b with -<- gives two distinct orientations of the cycle:
     ->-.->-.-<-.-<-.->-.-<-   :   ->-.-<-.->-.->-.-<-.-<-
    |                       |  :  |                       |
     -----------.-----------   :   -----------.-----------
These two might be written in shorthand as >><<>< and <<>><>.
The a(8) = 4 pairs of bracelets are rrrrbrbb, rrrbrrbb, rrrbrbbb, rrbrbrbb and their complements.
(End)
		

Crossrefs

The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.

Programs

Formula

a(n) = A053656(n) - A000011(n).
A053656(n) = 2*a(n) + A256217(n). - Andrew Howroyd and Ed Wynn, Jun 15 2021

A000011 Number of n-bead necklaces (turning over is allowed) where complements are equivalent.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 8, 9, 18, 23, 44, 63, 122, 190, 362, 612, 1162, 2056, 3914, 7155, 13648, 25482, 48734, 92205, 176906, 337594, 649532, 1246863, 2405236, 4636390, 8964800, 17334801, 33588234, 65108062, 126390032, 245492244, 477353376, 928772650, 1808676326, 3524337980
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of minimal fibrations of a bidirectional n-cycle over the 2-bouquet up to precompositions with automorphisms of the n-cycle and postcomposition with automorphisms of the 2-bouquet. (Boldi et al.) - Sebastiano Vigna, Jan 08 2018
For n >= 3, also the number of distinct planar embeddings of the n-sunlet graph. - Eric W. Weisstein, May 21 2024

Examples

			From Jason Orendorff (jason.orendorff(AT)gmail.com), Jan 09 2009: (Start)
The binary bracelets for small n are:
  n: bracelets
  0: (the empty bracelet)
  1: 0
  2: 00, 01
  3: 000, 001
  4: 0000, 0001, 0011, 0101
  5: 00000, 00001, 00011, 00101
  6: 000000, 000001, 000011, 000101, 000111, 001001, 001011, 010101
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 2 of A320748.
Cf. A000013. Bisections give A000117 and A092668.
The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.

Programs

  • Maple
    with(numtheory): A000011 := proc(n) local s,d; if n = 0 then RETURN(1) else s := 2^(floor(n/2)); for d in divisors(n) do s := s+(phi(2*d)*2^(n/d))/(2*n); od; RETURN(s/2); fi; end;
  • Mathematica
    a[n_] := Fold[ #1 + EulerPhi[2#2]2^(n/#2)/(2n) &, 2^Floor[n/2], Divisors[n]]/2
    a[ n_] := If[ n < 1, Boole[n == 0], 2^Quotient[n, 2] / 2 + DivisorSum[ n, EulerPhi[2 #] 2^(n/#) &] / (4 n)]; (* Michael Somos, Dec 19 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, 2^(n\2) / 2 + sumdiv(n, k, eulerphi(2*k) * 2^(n/k)) / (4*n))}; /* Michael Somos, Jun 03 2002 */

Formula

a(n) = (A000013(n) + 2^floor(n/2))/2.

Extensions

Better description from Christian G. Bower
More terms from David W. Wilson, Jan 13 2000

A123045 Number of frieze patterns of length n under a certain group (see Pisanski et al. for precise definition).

Original entry on oeis.org

0, 2, 6, 12, 39, 104, 366, 1172, 4179, 14572, 52740, 190652, 700274, 2581112, 9591666, 35791472, 134236179, 505290272, 1908947406, 7233629132, 27488079132, 104715393912, 399823554006, 1529755308212, 5864066561554, 22517998136936, 86607703209516
Offset: 0

Views

Author

N. J. A. Sloane, Nov 11 2006

Keywords

Crossrefs

The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.

Programs

  • Maple
    with(numtheory):
    V:=proc(n) local k, t1; t1:=0; for k in divisors(n) do t1 := t1+phi(k)*4^(n/k); od: t1; end; # A054611
    H:=n-> if n mod 2 = 0 then (n/2)*4^(n/2); else 0; fi; # this is A018215 interleaved with 0's
    A123045:=n-> `if`(n=0,0, (V(n)+H(n))/(2*n));
  • Mathematica
    V[n_] := Module[{t1 = 0}, Do[t1 = t1 + EulerPhi[k] 4^(n/k), {k, Divisors[n]}]; t1];
    H[n_] := If[Mod[n, 2] == 0, (n/2) 4^(n/2), 0];
    a[n_] := If[n == 0, 0, (V[n] + H[n])/(2n)];
    a /@ Range[0, 26] (* Jean-François Alcover, Mar 20 2020, from Maple *)

Formula

See Maple program.

A256217 a(n) = A000011(n) - A256216(n).

Original entry on oeis.org

1, 2, 2, 4, 4, 7, 8, 14, 16, 26, 32, 52, 64, 101, 128, 202, 256, 399, 512, 796, 1024, 1583, 2048, 3162, 4096, 6302, 8192, 12586, 16384, 25124, 32768, 50186, 65536, 100232, 131072, 200266, 262144, 400115, 524288, 799568, 1048576, 1597834, 2097152, 3193438, 4194304, 6382637, 8388608, 12757770, 16777216, 25501370
Offset: 1

Views

Author

N. J. A. Sloane, Mar 26 2015

Keywords

Comments

Counts contiguously substituted cycloalkane polyols (CSCPs).
Consider a bracelet of n beads, each colored blue on one side and red on the other -- each bead changes color when the bracelet is turned over. Reversal is then the same as swapping the colors. a(n) is the number of colorings that are invariant under reversal, up to rotation and turning over. - Ed Wynn, May 22 2021

Examples

			The a(7) = 8 bracelets are rrrrrrr, rrrrrrb, rrrrrbb, rrrrbbb, rrrrbrb, rrrbrrb, rrbbrrb, rrbrbrb. - _Ed Wynn_, May 22 2021
a(12) = A056503(12) + 1. The extra bracelet is rrrbrrbbbrbb. - _Andrew Howroyd_, Jun 25 2021
		

Crossrefs

The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.

Formula

a(n) = A056503(n) for odd n. - Andrew Howroyd, Jun 14 2021

A283846 Number of n-gonal inositol homologs with 2 kinds of achiral proligands.

Original entry on oeis.org

2, 6, 10, 31, 68, 226, 650, 2259, 7542, 27036, 96350, 352786, 1294652, 4806366, 17912120, 67160083, 252710672, 954641186, 3617076710, 13744708060, 52358745532, 199914446106, 764881848410, 2932043941394, 11259015845684, 43303894193076, 166800053312630
Offset: 1

Views

Author

N. J. A. Sloane, Apr 01 2017

Keywords

Comments

Counts A032275 up to paired color permutation (equivalent to full color permutation on the 2-tuples of two subcolors, e.g., convert quaternary beads 0 1 2 3 to dibit beads 00 01 10 11). - Travis Scott, Jan 09 2023

Crossrefs

The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.

Programs

  • Maple
    f:=  proc(m) uses numtheory;
      if m::even then 1/(4*m)*add(phi(d)*4^(m/d)*`if`(d::even,2,1), d = divisors(m))
    + 3*2^(m-2)
      else
    1/(4*m)*add(phi(d)*4^(m/d),d=divisors(m))+2^(m-1)
      fi
    end proc:
    map(f, [$1..100]); # Robert Israel, Aug 21 2018
  • Mathematica
    f[m_] := If[EvenQ[m], 1/(4m)*Sum[EulerPhi[d]*4^(m/d)*If[EvenQ[d], 2, 1], {d, Divisors[m]}]+ 3*2^(m-2), 1/(4m)*Sum[EulerPhi[d]*4^(m/d), {d, Divisors[m]}] + 2^(m-1)];
    f /@ Range[1, 25] (* Jean-François Alcover, Feb 26 2019, after Robert Israel *)

Formula

From Robert Israel, Aug 21 2018 after Fujita (2017), Eq. (99)(set n=2, m=n): (Start)
if n is even, a(n) = (4*n)^(-1)*(Sum_{d|n} phi(d)*4^(n/d) + Sum_{d|n, d even} phi(d)*4^(n/d)) + 3*2^(n-2).
if n is odd, a(n) = 2^(n-1) + (4*n)^(-1)*Sum_{d|n} phi(d)*4^(n/d). (End)

Extensions

a(1)-a(2) prepended by Travis Scott, Jan 09 2023

A283847 Number of n-gonal inositol homologs with 2 kinds of achiral proligands.

Original entry on oeis.org

2, 8, 36, 140, 522, 1920, 7030, 25704, 94302, 347488, 1286460, 4785300, 17879352, 67076096, 252579600, 954306220, 3616552422, 13743371072, 52356648380, 199909107900, 764873459802, 2932022620160, 11258982291252, 43303809016440, 166799919094902, 643371241120928
Offset: 3

Views

Author

N. J. A. Sloane, Apr 01 2017

Keywords

Crossrefs

The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.

Programs

  • Maple
    f:= proc(n) uses numtheory;
      if n::even then (4*n)^(-1)*add(phi(d)*4^(n/d), d = select(type,divisors(n),odd)) - 2^(n-1)
      else (4*n)^(-1)*add(phi(d)*4^(n/d), d = divisors(n)) - 2^(n-1)
      fi
    end proc:
    map(f, [$3..50]); # Robert Israel, Aug 23 2018
  • Mathematica
    a[n_] := If[EvenQ[n], (4n)^(-1) Sum[EulerPhi[d] 4^(n/d), {d, Select[ Divisors[n], OddQ]}] - 2^(n-1), (4n)^(-1) Sum[EulerPhi[d] 4^(n/d), {d, Divisors[n]}] - 2^(n-1)];
    Table[a[n], {n, 3, 50}] (* Jean-François Alcover, Mar 23 2019, after Robert Israel *)

Formula

a(n) = (4*n)^(-1)*(Sum_{d|n, d odd} phi(d)*4^(n/d)) - 2^(n-1). - Robert Israel, Aug 23 2018 after Fujita (2017), Eq. (100) (set n=2, m=n)

A283848 Number of n-gonal inositol homologs with 2 kinds of achiral proligands.

Original entry on oeis.org

8, 23, 32, 86, 128, 339, 512, 1332, 2048, 5298, 8192, 21066, 32768, 83987, 131072, 334966, 524288, 1336988, 2097152, 5338206, 8388608, 21321234, 33554432, 85176636, 134217728, 340338398, 536870912, 1360073016, 2147483648, 5435820051, 8589934592, 21727481616, 34359738368, 86853790498, 137438953472
Offset: 3

Views

Author

N. J. A. Sloane, Apr 01 2017

Keywords

Crossrefs

The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.

Programs

  • Maple
    f:= proc(n) uses numtheory;
      if n::even then (2*n)^(-1)*add(phi(d)*4^(n/d),d=select(type,divisors(n),even))+5*2^(n-2)
      else 2^n
      fi
    end proc:
    map(f, [$1..40]); # Robert Israel, Aug 23 2018
  • Mathematica
    a[n_] := If[EvenQ[n], (2n)^(-1) Sum[EulerPhi[d] 4^(n/d), {d, Select[ Divisors[n], EvenQ]}] + 5*2^(n-2), 2^n];
    Table[a[n], {n, 3, 40}] (* Jean-François Alcover, Mar 23 2019, after Robert Israel *)
  • PARI
    a(n) = if (n%2, 2^n, (2*n)^(-1)*sumdiv(n, d, if (!(d%2), eulerphi(d)*4^(n/d))) + 5*2^(n-2)); \\ Michel Marcus, Mar 23 2019

Formula

If n is even, a(n) = (2*n)^(-1)*Sum_{d|n, d even} phi(d)*4^(n/d) + 5*2^(n-2). - Robert Israel, Aug 23 2018 after Fujita (2017), Eq. (101) (set n=2, m=n).
If n is odd, a(n) = 2^n. For the even bisection see A284711.

Extensions

Edited and more terms by Robert Israel, Aug 23 2018

A300190 Number of solutions to 1 +- 2 +- 3 +- ... +- n == 0 (mod n).

Original entry on oeis.org

1, 0, 2, 4, 4, 0, 10, 32, 30, 0, 94, 344, 316, 0, 1096, 4096, 3856, 0, 13798, 52432, 49940, 0, 182362, 699072, 671092, 0, 2485534, 9586984, 9256396, 0, 34636834, 134217728, 130150588, 0, 490853416, 1908874584, 1857283156, 0, 7048151672, 27487790720
Offset: 1

Views

Author

Seiichi Manyama, Feb 28 2018

Keywords

Comments

Apparently a(2*n + 1) = A053656(2*n + 1) for n >= 0. - Georg Fischer, Mar 26 2019

Examples

			Solutions for n = 7:
--------------------------
1 +2 +3 +4 +5 +6 +7 =  28.
1 +2 +3 +4 +5 +6 -7 =  14.
1 +2 -3 +4 -5 -6 +7 =   0.
1 +2 -3 +4 -5 -6 -7 = -14.
1 +2 -3 -4 +5 +6 +7 =  14.
1 +2 -3 -4 +5 +6 -7 =   0.
1 -2 +3 +4 -5 +6 +7 =  14.
1 -2 +3 +4 -5 +6 -7 =   0.
1 -2 -3 -4 -5 +6 +7 =   0.
1 -2 -3 -4 -5 +6 -7 = -14.
		

Crossrefs

Number of solutions to 1 +- 2^k +- 3^k +- ... +- n^k == 0 (mod n): this sequence (k=1), A300268 (k=2), A300269 (k=3).
Cf. A016825 (4n+2).

Programs

  • Maple
    b:= proc(n, i, m) option remember; `if`(i=0, `if`(n=0, 1, 0),
          add(b(irem(n+j, m), i-1, m), j=[i, m-i]))
        end:
    a:= n-> b(0, n-1, n):
    seq(a(n), n=1..60);  # Alois P. Heinz, Mar 01 2018
  • Mathematica
    b[n_, i_, m_] := b[n, i, m] = If[i == 0, If[n == 0, 1, 0], Sum[b[Mod[n + j, m], i - 1, m], {j, {i, m - i}}]];
    a[n_] := b[0, n - 1, n];
    Array[a, 60] (* Jean-François Alcover, Apr 29 2020, after Alois P. Heinz *)
  • Ruby
    def A(n)
      ary = [1] + Array.new(n - 1, 0)
      (1..n).each{|i|
        i1 = 2 * i
        a = ary.clone
        (0..n - 1).each{|j| a[(j + i1) % n] += ary[j]}
        ary = a
      }
      ary[(n * (n + 1) / 2) % n] / 2
    end
    def A300190(n)
      (1..n).map{|i| A(i)}
    end
    p A300190(100)

Formula

a(4*n+1) = A000016(n), a(4*n+2) = 0, a(4*n+3) = A000016(n), a(4*n+4) = 2 * A000016(n) for n > 0.
a(2^n) = 2^A000325(n) for n > 1.

A026119 Bisection of A000016 (also of A000013).

Original entry on oeis.org

1, 2, 4, 10, 30, 94, 316, 1096, 3856, 13798, 49940, 182362, 671092, 2485534, 9256396, 34636834, 130150588, 490853416, 1857283156, 7048151672, 26817356776, 102280151422, 390937468408, 1497207322930, 5744387279818, 22076468764192
Offset: 0

Views

Author

N. J. A. Sloane, Apr 12 2000

Keywords

Crossrefs

Bisection of A053634 and A053656.

Programs

  • PARI
    a(n) = sumdiv(2*n+1, d, eulerphi(d)*2^((2*n+1)/d)) / (4*n+2); \\ Michel Marcus, Sep 11 2013
    
  • Python
    from sympy import totient, divisors
    def A026119(n):
        m = (n<<1)+1
        return sum(totient(d)<Chai Wah Wu, Feb 21 2023

Formula

a(n) = (Sum_{d | 2n+1} phi(d)*2^((2n+1)/d)) / (4n+2).

A066313 Number of aperiodic necklaces with n red or blue beads such that two necklaces are equivalent under the operation of simultaneously turning the necklace over and switching the two colors.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 9, 18, 28, 57, 93, 181, 315, 612, 1091, 2100, 3855, 7392, 13797, 26436, 49929, 95790, 182361, 350440, 671088, 1292445, 2485504, 4797261, 9256395, 17903316, 34636833, 67124160, 130150493, 252675975, 490853403, 954498874, 1857283155, 3616938738
Offset: 1

Views

Author

Christian G. Bower, Dec 13 2001; revised Apr 25 2006

Keywords

Comments

Also number of aperiodic cyclic graphs with oriented edges on n nodes that can be turned over.

Examples

			The equivalence requires the "turning over" operation and the "switching colors" operation to be simultaneous; thus rrrbbrrb is equivalent to rbbrrbbb, but not to bbbrrbbr.
		

Crossrefs

Cf. A053656.

Programs

  • PARI
    \\ here b(n) is A053656.
    b(n)={(sumdiv(n, d, eulerphi(d)*2^(n/d))/n + if(n%2==0, 2^(n/2-1)))/2}
    a(n)={sumdiv(n, d, moebius(d)*b(n/d))} \\ Andrew Howroyd, Jun 14 2021

Formula

Moebius transform of A053656.

Extensions

Terms a(36) and beyond from Andrew Howroyd, Jun 14 2021
Showing 1-10 of 13 results. Next