A283848 Number of n-gonal inositol homologs with 2 kinds of achiral proligands.
8, 23, 32, 86, 128, 339, 512, 1332, 2048, 5298, 8192, 21066, 32768, 83987, 131072, 334966, 524288, 1336988, 2097152, 5338206, 8388608, 21321234, 33554432, 85176636, 134217728, 340338398, 536870912, 1360073016, 2147483648, 5435820051, 8589934592, 21727481616, 34359738368, 86853790498, 137438953472
Offset: 3
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 3..3318
- Shinsaku Fujita, alpha-beta Itemized Enumeration of Inositol Derivatives and m-Gonal Homologs by Extending Fujita's Proligand Method, Bull. Chem. Soc. Jpn. 2017, 90, 343-366; doi:10.1246/bcsj.20160369. See Table 8.
Crossrefs
Programs
-
Maple
f:= proc(n) uses numtheory; if n::even then (2*n)^(-1)*add(phi(d)*4^(n/d),d=select(type,divisors(n),even))+5*2^(n-2) else 2^n fi end proc: map(f, [$1..40]); # Robert Israel, Aug 23 2018
-
Mathematica
a[n_] := If[EvenQ[n], (2n)^(-1) Sum[EulerPhi[d] 4^(n/d), {d, Select[ Divisors[n], EvenQ]}] + 5*2^(n-2), 2^n]; Table[a[n], {n, 3, 40}] (* Jean-François Alcover, Mar 23 2019, after Robert Israel *)
-
PARI
a(n) = if (n%2, 2^n, (2*n)^(-1)*sumdiv(n, d, if (!(d%2), eulerphi(d)*4^(n/d))) + 5*2^(n-2)); \\ Michel Marcus, Mar 23 2019
Formula
If n is even, a(n) = (2*n)^(-1)*Sum_{d|n, d even} phi(d)*4^(n/d) + 5*2^(n-2). - Robert Israel, Aug 23 2018 after Fujita (2017), Eq. (101) (set n=2, m=n).
If n is odd, a(n) = 2^n. For the even bisection see A284711.
Extensions
Edited and more terms by Robert Israel, Aug 23 2018