A283875 Number of partitions of n into twin primes (A001097).
1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 6, 7, 7, 9, 9, 11, 12, 13, 15, 16, 19, 20, 23, 25, 27, 31, 33, 37, 40, 44, 49, 52, 59, 63, 69, 76, 81, 90, 96, 106, 114, 123, 135, 144, 157, 169, 183, 197, 212, 230, 246, 266, 286, 307, 330, 353, 381, 406, 436, 468, 499, 536, 572, 613, 654, 698, 746, 795, 849, 904, 964
Offset: 0
Keywords
Examples
a(16) = 4 because we have [13, 3], [11, 5], [7, 3, 3, 3] and [5, 5, 3, 3].
Links
- Eric Weisstein's World of Mathematics, Twin Primes
- Index entries for related partition-counting sequences
Programs
-
Mathematica
nmax = 79; CoefficientList[Series[Product[1/(1 - Boole[PrimeQ[k] && (PrimeQ[k - 2] || PrimeQ[k + 2])] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
-
PARI
Vec(prod(k=1, 79, 1/(1 - (isprime(k) && (isprime(k - 2) || isprime(k + 2)))*x^k)) + O(x^80)) \\ Indranil Ghosh, Mar 17 2017
Formula
G.f.: Product_{k>=1} 1/(1 - x^A001097(k)).
Comments