cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283877 Number of non-isomorphic set-systems of weight n.

Original entry on oeis.org

1, 1, 2, 4, 9, 18, 44, 98, 244, 605, 1595, 4273, 12048, 34790, 104480, 322954, 1031556, 3389413, 11464454, 39820812, 141962355, 518663683, 1940341269, 7424565391, 29033121685, 115921101414, 472219204088, 1961177127371, 8298334192288, 35751364047676, 156736154469354
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2017

Keywords

Comments

A set-system is a finite set of finite nonempty sets. The weight of a set-system is the sum of cardinalities of its elements.

Examples

			Non-isomorphic representatives of the a(4)=9 set-systems are:
((1234)),
((1)(234)), ((3)(123)), ((12)(34)), ((13)(23)),
((1)(2)(12)), ((1)(2)(34)), ((1)(3)(23)),
((1)(2)(3)(4)).
		

Crossrefs

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
    a(n)={if(n==0, 1, my(s=0); forpart(q=n, my(g=sum(t=1, n, subst(x*Ser(K(q, t, n\t)/t),x,x^t) )); s+=permcount(q)*polcoef(exp(g - subst(g,x,x^2)), n)); s/n!)} \\ Andrew Howroyd, Jan 16 2024

Formula

Euler transform of A300913.

Extensions

a(0) = 1 prepended and terms a(11) and beyond from Andrew Howroyd, Sep 01 2019